Analyzing the Robustness of Open Source Software
Ecosystems to the Loss of Contributors: A Case Study

Zhendong Sha, Alice Petrov, Yuan Tian, Ting Hu
School of Computing, Queen’s University, Canada

Abstract

Context: The health and sustainability of an open-source software (OSS)
ecosystem depends on its contributors’ initiative. Unfortunately, studies have
shown that OSS projects often suffer from high contributor turnover rates
due to their open-source nature. High contributor turnover rates can have
negative impacts on the community involved in individual projects and the
ecosystem that relies on such projects.

Objective: Propose a computational model to quantify the robustness of a
software ecosystem to contributor loss and perform a case study on two OSS
ecosystems, i.e., Ruby and PyPI.

Method: We utilize a simulation method to analyze project extinction risk
due to contributor loss at the ecosystem-level. We apply the proposed method
on 12,267,933 and 1,459,322 commits scraped from 102,447 Ruby projects
and 69,311 PyPI libraries respectively, hosted on GitHub. To identify the
factors that influence the robustness of ecosystems, we propose an ecosystem
simulation method to generate artificial ecosystems with different control
parameters.

Results: We find that contributor turnover and project abandonment fre-
quently happen in Ruby and PyPI ecosystems. Moreover, the preference of
developers to contribute to large projects in an OSS ecosystem negatively
affects the robustness of the ecosystem. Both studied ecosystems are less
robust to the loss of active contributors who either intensively or extensively
contribute to the ecosystem than the random loss of contributors.

Conclusion: Our proposed methods can be leveraged to analyze the robust-
ness of a software ecosystem to contributor loss over time. Moreover, we
provide a ecosystem simulation method to analyze how various factors de-
termine the robustness of an OSS ecosystem, demonstrating the potential of

Preprint submitted to Information and Software Technology April 4, 2022

testing a hypothesis without empirical data for ecosystem robustness analy-
sis.

Keywords: Software Ecosystem, Computational Model, Robustness of OSS
Ecosystems, Developer Turnover, Case Study, Simulation Analysis.

1. Introduction

Over 80 percent of the software used in any technology product or service
today is open source, and this trend is growing (Zemlin, 2017). The expand-
ing open source software (OSS) community attracts many developers who
eagerly contribute to OSS projects. However, despite the importance of OSS
projects to the software industry and the increasing number of contributors,
many OSS projects fall short of active maintainers (Marsan et al., 2018) and
thus bring risk and have severe negative impacts on other software systems
that rely on them (Schneider, 2018; Apache Log4j, 2021). Additionally, OSS
projects suffer from a higher contributor turnover rate when compared to
closed software projects since most OSS contributors are not paid for their
contributions (Miller et al., 2019). Typical reasons for leaving an OSS project
include major life changes, lacking peer support, losing interest, etc. (Miller
et al., 2019). Recent studies have found that a high contributor turnover rate
can lead to knowledge loss (Nassif and Robillard, 2017; Rigby et al., 2016),
quality degradation (Foucault et al., 2015), and project extinction (Coelho
and Valente, 2017).

In the literature, researchers have mainly analyzed the prevalence and
impact of contributor turnover on individual projects (Izquierdo-Cortazar
et al., 2009; Foucault et al., 2015; Rigby et al., 2016; Nassif and Robillard,
2017), while studies of contributor turnover at the OSS ecosystem level are
more rare (Constantinou and Mens, 2017a). Moreover, no methodology exists
to quantify the impact of contributor loss at the ecosystem level, not to
mention statistical methods that can help identify factors that potentially
influence the robustness of a software ecosystem to contributor loss.

To fill the gap, this study aims to quantify the robustness of a software
ecosystem to contributor loss and perform a case study on representative OSS
ecosystems. A loss of a contributor in an OSS ecosystem refers to a contrib-
utor who stops contributing to all projects in the considered ecosystem. The
main reason for studying this topic is because local (project level) contributor
turnover will eventually have cascading effects on the entire ecosystem due

to the sharing of code and contributors at the ecosystem level (Constantinou
and Mens, 2017b; Valiev et al., 2018; Blincoe et al., 2019). Thus, it is cru-
cial for an OSS community and its members to be aware of the ecosystem’s
robustness to the loss of contributors, i.e., the ability to remain stable (e.g.,
retain active projects) despite contributor loss.

OSS communities can be formed in different ways. In this study, we
consider all contributors who have ever committed to the code base of any
projects within an OSS ecosystem as members of an OSS community. Fol-
lowing the definition provided by Lungu (Lungu, 2008), we refer to software
ecosystems as collections of software projects that are developed and evolve
together in the same environment. Sample software ecosystems include li-
braries of programming languages (e.g., packages in npm, PyPI), distribu-
tions of operating systems (e.g., Ubuntu and Debian), and applications in
mobile app stores (e.g., Google Play Store).

Inspired by a well-known model (Pocock et al., 2012) proposed to an-
alyze the robustness of an ecological ecosystem to the loss of species, we
propose the first computational framework that can quantify and analyze
an OSS ecosystem’s robustness to the loss of contributors. The computa-
tional framework models an OSS ecosystem during a specified period using
a contributor-project network, where each node represents a contributor or a
project in the ecosystem and edges between contributors and projects rep-
resent project contribution relationships. The framework then simulates the
loss of contributors in the ecosystem by removing contributor nodes one by
one from the contributor-project network. The sequence of removed nodes
can be randomly generated or follow a specific mechanism, e.g., removing
contributors who contribute the most in the ecosystem first. Each simulated
contributor removal process results in a curve representing the cascading neg-
ative effects of contributor loss on the ecosystem in terms of project loss’.
The area under the curve is calculated to represent the robustness of the
ecosystem. To further answer questions regarding which factors influence
the robustness of an OSS ecosystem to the loss of contributors, we propose a
new bipartite graph generation model where we utilize parameters to control
the topologies of contributor-project networks and perform robustness anal-
ysis. Our proposed generation model complements empirical studies which

'Project loss in one time interval means that the project receives no commits in the
given time interval, i.e., the project is inactive.

mainly rely on observed empirical data.

We apply our methods to analyze the contributor loss and project extinc-
tion in two popular OSS ecosystems, i.e., the Python PyPI ? ecosystem and
the Ruby ecosystem on GitHub. Specifically, we analyze the robustness of
the Ruby and PyPT ecosystems to the random loss of contributors (RQ1),
and the robustness of synthesized OSS ecosystems with different topological
properties to the random loss of contributors (RQ2). We demonstrate how
our computational framework can be extended to analyze the impact of two
specific types of contributor loss (random loss weighted by a contributor’s
commit number and project number) on the robustness of an OSS system
(RQ3). To answer the above research questions, we collected 12,267,933 and
1,459,322 commits® from 102,447 Ruby projects and 69,311 PyPI libraries re-
spectively, hosted on GitHub.

The main contributions of our work are as follows:

e We propose the first computational model to quantify software ecosys-
tem robustness with respect to the random loss of contributors. We
also demonstrate how our model can be adapted to analyze the impact
of specific types of contributor loss at the ecosystem level.

e We propose a bipartite graph model that can generate synthetic OSS
ecosystems and analyze how the topological properties of an OSS ecosys-
tem can affect its robustness to the random loss of contributors.

e We conduct case studies on the robustness of OSS ecosystems to the
loss of contributors in the PyPI and Ruby ecosystems by analyzing ten
years of evolutionary data.

We provide a replication package* with our dataset and source code as a
means to enable more in-depth and varied studies in this new research area.
Paper organization: The rest of the paper is organized as follows. Sec-
tion 2 introduces the background related to the study of OSS ecosystem anal-
ysis and simulation. Section 3 introduces the design details of our proposed
method for quantifying and analyzing the robustness of an OSS ecosystem
to the loss of contributors. Section 4 presents our design for a case study on

2PyPI is the official third-party registry for Python packages
3Commits were collected in March 2020.
‘https://figshare.com/s/12130214f4824442e4d1

the Ruby and PyPI ecosystems. Section 5 discusses the results of the case
study. Section 6 discusses the limitations of this work. Finally, Section 7
concludes the paper.

2. Background

2.1. Developer Turnover in Software Projects

Developer turnover and contributor loss are critical threats to software
development teams and OSS ecosystems (Schilling et al., 2012; Ehls, 2017).
To help companies and OSS project maintainers retain developers and mit-
igate the risk introduced by developer turnover, studies have been con-
ducted to understand why developers leave commercial or open-source soft-
ware projects (Miller et al., 2019), and explore developer turnover patterns (Con-
stantinou and Mens, 2017a; Lin et al., 2017).

Miller et al. (Miller et al., 2019) conducted a survey with developers to
understand why they gave up on OSS projects. They identified three rea-
sons: occupational, social, and technical. For instance, the most mentioned
occupational reasons are: a new job that does not support OSS; a change of
role/project; leaving a job where they contributed to OSS; a lack of time due
to a new job; a lack of time due to an existing job; the use of OSS in school
but not in professional work; too much code at work.

When analyzing the risk of contributor loss on OSS projects, a metric
known as Truck Factor (TF) is frequently adopted to identify the concen-
tration of knowledge in software development environments (Williams and
Kessler, 2003; Zazworka et al., 2010; Torchiano et al., 2011; Cosentino et al.,
2015; Mens, 2016). TF is defined as the minimum number of developers who
have to be hit by a truck (or leave the team) to put the project in trouble.
TF is also known as Bus Factor/Number or Lottery Factor. A low TF value
means that the project’s knowledge is concentrated in a few team members,
and the project faces a serious risk of discontinuation should these developers
leave. In contrast, a high TF value means that every developer is contribut-
ing to the project in similar terms and the risk for project discontinuation
is low. TF is also considered as a metric for identifying the most important
contributors in a software project (Pfeiffer, 2021). Avelino et al. (Avelino
et al., 2019) found that the majority of their studied OSS projects do not
survive when Truck Factor developers disengage and no other developers
replace them. To overcome the challenge of knowledge concentration, i.e.,
having a low TF value, Etemadi et al. (Etemadi et al., 2022) proposed a

self-adaptive task assignment (SATA) approach that adaptively switches be-
tween cost-oriented and diffusion-oriented strategies over subsequent rounds
of task assignments proposed.

Lin et al. (Lin et al., 2017) explored factors which can impact the will of
developers to stay in OSS projects. They collected and analyzed the code
commit history of five industrial OSS projects. They found that developers
who start contributing to the project earlier, balance maintaining files created
by themselves with files created by others, and mainly modify files tend to
stay longer, i.e., leave the project later. In a similar manner, we leverage
code commits as the main contribution activity in an OSS ecosystem. Ali et
al. (Ali et al., 2020) apply survival analysis methods on 3,052 popular Python
projects to examine the attributes that might lead to their inactivity over
time. They found that projects with repositories on multiple hosting services,
a timeline of publishing major releases, and a good network of developers
remain healthy over time.

Constantinou et al. (Constantinou and Mens, 2017a) extended Lin et
al.’s work to analyze both social and technical factors that impact developer
turnover. Their work is also the first analyzing developer turnover at the
ecosystem level. They found that developers who do not engage in discus-
sions with other developers, do not have strong social and technical activity
intensity, communicate or commit less frequently, and do not participate in
both technical and social activities for long periods of time are more likely
to abandon an ecosystem.

Overall, our study is different from most existing work on developer
turnover because we conduct an ecosystem level analysis. Unlike the only
ecosystem level study by Constantinou et al. (Constantinou and Mens, 2017a),
we do not investigate the characteristics of developers who leave an ecosys-
tem. Instead, we measure the impact of their loss on the ecosystem.

2.2. Robustness Analysis

The concept of robustness is well developed in engineering, referring to
the maintenance of system performance when subject to unpredictable exter-
nal perturbations, or when there is uncertainty about the values of internal
design parameters (Carlson and Doyle, 2002). Depending on the application
discipline, the definition and analysis of robustness may vary. For instance,
in social sciences and economics researchers explore the stability of human
societies in the face of disrupting forces (Cutter et al., 2008). In engineering,
designers of communication systems conduct robustness analysis to ensure

6

their system can function despite occasional failures, and even under at-
tack (Wang et al., 2014).

System robustness analysis is often conducted via analyzing the robust-
ness of the networks representing the crucial relationships in a system. For
instance, researchers in ecology have investigated the robustness of networks
capturing the interactions between species (e.g., feeding relationships) in
ecological ecosystems (Pocock et al., 2012; Cai and Liu, 2016). Pocock et
al. (Pocock et al., 2012) propose the first and widely adopted (Pilosof et al.,
2017) computational framework that can quantify the robustness of an eco-
logical ecosystem to the loss of species and identify the keystone species in
an ecosystem which are vital for ecosystem restoration planning. Cai and
Liu (Cai and Liu, 2016) further extend the model to analyze the robustness
of such ecosystems to the loss of multiple species in a community (rather than
individual species). We believe their methodology can be applied to analyze
the robustness of OSS ecosystems to the loss of contributors, as a similar
“feeding” relationship exists in the OSS contribution process, i.e., the loss
of contributors may lead to the extinction of a project and eventually affect
the whole ecosystem that contains the project. Moreover, ecological mod-
els and theories from natural ecosystems have been adapted and adopted to
understand and better explain the evolution of OSS ecosystems in previous
work (Mens et al., 2014).

2.3. Simulation Study

Empirical analysis is widely adopted by software engineering research to
obtain knowledge from data describing various software systems. However,
the data dependency of empirical analysis can not always be satisfied. There-
fore, it has been proposed to analyze the problems encountered in software
engineering by using simulation studies (Stol and Fitzgerald, 2018). By con-
structing various simulation models, we are able to reduce the dependency of
analysis on real data and facilitate a more detailed analysis about the prob-
lem by adjusting the generation parameters. Typically, simulation studies
can be divided into the following two categories.

The first simulation method, known as experimental simulation (Stol and
Fitzgerald, 2018), generates different artificial systems to allow for a more
detailed understanding concerning the actual situation of the system. For
example, the green house compared to the wild environment can fix certain
system parameters (i.g. temperature), allowing the researcher to conduct a
more focused analysis (Runkel and McGrath, 1972).

7

The second type of simulation method is known as computer simula-
tion (Stol and Fitzgerald, 2018). This type of simulation focuses on the
evaluation of the system by simulating the external changes that the system
may experience (Stol and Fitzgerald, 2018). In the field of public safety,
this approach is used to evaluate the safety of buildings in emergency situa-
tions (Tsigkanos et al., 2014). In the biology domain, through simulating the
extinction of endangered plants and animals, we can measure the robustness
of ecosystems (Pocock et al., 2012). In software engineering domain, simu-
lation experiments also enable us to evaluate the response of systems under
various situations of interest (Setamanit et al., 2007).

3. Methodology

3.1. Terminology

In the remainder of this paper, we refer to the robustness of an OSS
ecosystem to the loss of contributors as the OSS’s robustness. When captur-
ing the contribution relationship between developers and projects within one
ecosystem, we consider the submission of code commit(s) as a contribution,
similar to existing work (Constantinou and Mens, 2017b; Bao et al., 2019).

To report and analyze the dynamics of OSS robustness, we create multiple
snapshots of each target ecosystem, where each snapshot contains commits
created by the contributors of the target ecosystem in a given time inter-
val. Projects and contributors are categorized into three groups indicating
their status within each time interval: the new immigrants (NewProjects
and Joiners) — projects and contributors that are newly created and join
the ecosystem within the current time interval; the residents (ActiveProject
and ActiveContr) — projects and contributors that are active in the current
intervals; the emigrants (AbandonedProjects and Leavers)— the projects and
contributors that are active in the current time interval, but no longer active
in the next time interval, i.e., those projects and contributors which are leav-

ing in the current interval. We summarize the definitions of these six terms
in Table 1.

3.2. Modeling Contribution in OSS Ecosystems

Before we dive into the details of our OSS ecosystem robustness model,
we first introduce two important graphs we utilize to capture the relationship
among projects within an OSS ecosystem and their contributors.

Table 1: Definitions of contributor and project metrics for each time interval.

Metrics Definitions
ActiveProjects(t) {p|isActive(p,t)}

(p,t
ObsoleteProjects(t) {p|isActive(p,t) \Vi > t, —isActive(p,i)}
NewProjects(t) {plisActive(p,t) \ Vi < t,~isActive(p,i)}
ActiveContr(t) {c|isContr(c,t)}
Leavers(t) {c|isContr(c,t) \Vi > t,—isContr(c,i)}
Joiners(t) {c|isContr(c,t) \Vi < t,~isContr(c,i)}

isActive(p,t) means project p reveives commits in time interval ¢;
isContr(c,t) means contributor ¢ authors commits in time interval .

Definition 3.1. Project Contributor Graph: A bipartite graph
G = (N¢,Np, E) (1)

is utilized to summarize the historical commits in the ecosystem, where N
and Np are two sets of nodes representing active contributors and projects in
the ecosystem and E is a set of edges, wherein edge (C;, P;) € E if and only if
project P; € Np receives at least one commit from contributor C; € N¢. An

example G containing five projects and five contributors is shown in Figure
1.

.Proiect ‘Contributor — Commit

Figure 1: An example project contributor graph. The graph describes a software ecosystem
consisting of five projects and five contributors.

Formulating all commit activities as one graph neglects the temporary
characteristics of an evolving software ecosystem. To address this issue, we
define a temporary project contributor graph G, to capture the characteristics
of an ecosystem in a specific period.

Definition 3.2. Temporary Project Contributor Graph: A bipartite
graph
G = (No(t), Ne(t), E(1)) (2)

is utilized to summarize historical commits that took place within the time
interval specified by interval t. Wherein a node set N¢(t) represents active
contributors that make at least one commit in the time interval ¢, a node set
Np(t) represents active projects that receive at least one commit in the time
interval ¢ and (C;, P;) € E(t) if and only if project P; € Np(t) receives at
least one commit from contributor C; € Ng(t).

3.3. Quantifying OSS Ecosystem Robustness to the Loss of Contributors

We evaluate the robustness of the OSS ecosystem to the loss of con-
tributors by simulating the random removal of contributors from the
contributor node-set N¢.

The reasons for analyzing the random loss of contributors are threefold.
Firstly, it is impossible to predict and model which contributors will leave an
ecosystem and in what order with 100% accuracy. Since we cannot model
the actual contributor loss, any robustness metric is only an estimation of
the actual situation. Next, in practice, we never know the underlying rea-
sons for all contributor losses. For instance, given the sudden occurrence of
COVID-19, many OSS contributors may leave their community. Without
verifying the reason for each of those who left, it is not possible to conclude
whether a particular set of contributors was lost because they were impacted
by COVID-19, not to mention modeling such loss prior to the loss. More-
over, a mixed set of factors would contribute to the observed contributor loss
at the ecosystem level, as opposed to a mere one or two factors. Thus, we
simulate contributor loss in a random order mimicking a scenario for which
we do not have the data (e.g., gender, age, working status, etc.) to deter-
mine who would be more likely to leave the community first. Last but not
the least, robustness to random loss can be regarded as a baseline when an-
alyzing whether an ecosystem is sensitive to particular types of contributor
loss. We elaborate more on how our model can be easily adapted to analyze
pre-defined types of contributor loss in Section 5.3.

Under our model, a project is considered inactive upon the loss of all its
contributors. We refer to the removal of contributors as primary extinction
simulation and the resulting failure of the project (i.e., the project being
inactive) as secondary extinction (Pocock et al., 2012).

10

Definition 3.3. Primary Extinction Simulation: We simulate order of
contributor removal using random permutation

per(w) = {u € ¥¥||w|, = |ulq, for a € X}, (3)
where w is a string enumerating all ecosystem contributors in N¢.

The cascading failure of projects is deepened when we remove contribu-
tors in the order of removal generated by a primary extinction simulation,
in which a project becomes inactive when all contributors are removed (sec-
ondary extinction) (Pocock et al., 2012). An example of a primary extinction
simulation is shown in Figure 2 (left).

The robustness of the OSS ecosystem R is gathered from multiple primary
extinction simulation runs, in which all contributors are removed according
to the order determined by the primary extinction simulation. We remove
all contributors, rather than removing a proportion of the contributors, since
software ecosystem robustness is defined as the area under the curve (AUC)
for project survival probability (Pocock et al., 2012; Burgos et al., 2007).

Definition 3.4. Software Ecosystem Robustness: R is calculated by
averaging the area under the curve AUC of the function of secondary extinc-
tions against primary extinction across multiple primary extinction simula-
tion runs. The area under the curve

AUC = /0 f(p)dp, (4)

with p representing the proportion of active contributors that are not removed
by primary extinction simulation and f(p) representing the proportion of
active projects surviving secondary extinction (Pocock et al., 2012).

An illustrative example for the calculation of software ecosystem robust-
ness R is provided in Figure 2. The distribution bar chart in Figure 2 (right)
shows that the AUC values derived from 1,000 primary extinction simula-
tions follow a bell-shaped distribution, indicating the AUC values gathered
across different primary extinction simulations are spread out around the
mean.

3.4. A Generative Network Model for OSS FEcosystems

We propose a generative network (i.e., bipartite graph) model with a
power-law degree distribution to formulate artificial software ecosystems.

11

1.0 300
S 08 225
g
» 3
5 g
2 05 S 150
<) o
o AUC =0.718 L;E_
k]
x 03 75

0.0 Lo 0

1.00 0.75 0.50 0.25 0.00 0.700 0.710 0.720 0.730 0.740
% of Contributor Survial AUC

Figure 2: An example of a primary extinction simulation. The plot on the left shows
the results of one primary extinction simulation, plotting the fraction of project survival
(x-axis) against the fraction of contributor survival (y-axis). The plot on the right shows
the distribution of the area under the curve of project survival (secondary extinction) in
1,000 primary extinction simulation runs.

The random network is generated according to a power-law degree distribu-
tion because the power-law distribution is observed in real software ecosys-
tems. This is reflected in the distribution of the number of different contrib-
utors working on a project (Figure 3) and the distribution of the number of
projects worked on by each contributor (Figure 4). By using the exponen-
tial function f(z) = cx? to fit this distribution, we can obtain a constant c
and the parameter \ reflecting the degree of the power-law distribution, the
larger the value of A the more uneven the distribution.

There are existing random graph models to generate random bipartite
graphs (Guillaume and Latapy, 2006). However, these models appear to lack
parameters to manipulate the simulation from aspects such as the degree of
power-law distribution. Thus, we develop a novel generative bipartite graph
model from scratch.

The novel generative model has one generation parameter — the curving
parameter ¢ to simulate the probabilities of ecosystem contributors partic-
ipating in projects with different existing contributor numbers, making the
resulting networks follow the power-law degree distribution. For any ecosys-
tem contributor, the probability of participating in project ¢ is determined
by the following probability function:

pli) = = (5)

Ruby PyPI
10000 10000
g 1000 1000 %
) %
ag) [
£ 100 100 %
?
10 10
%
o oan®m O
1 - - 1 :
1 10 100 1000 10000 1 10 100 1000 10000
Contributor # Contributor #

Figure 3: The distribution of projects’ active contributor numbers for the Ruby and PyPI
ecosystems. The x-axis represents the number of contributors and the y-axis represents the
corresponding frequency of projects. Both distributions follow the power-law distribution,
indicating the majority of projects have a small number of contributors.

where n; is the number of existing contributors of project ¢ and ¢ is the
curving parameter that will manipulate the degree of preferential partici-
pants (Barabdsi et al., 2016). If ¢ = 1 then p(i) is called linear preferential
attachment. If ¢ > 1 then p(i) is a superlinear preferential attachment. The
super-linear relationship will increase the possibility of contributors’ partic-
ipation in large projects and exacerbate the phenomenon of the richer-get-
richer. If ¢ < 1 then p(4) is sublinear preferential attachment, it will mitigate
the contributors’ tendency to participate in big projects, mitigating the phe-
nomenon of the richer-get-richer.

The novel generative model has one controlling parameter—the project per
contributor ratio (PPC). The PPC is simply the the number of active projects
included in the ecosystem divided by the number of active contributors. By
leveraging PPC, we are able to control the scale of the ecosystem simulations
derived from the novel generative model.

The artificial ecosystem generation process consists of three steps. The
first step is to initialize the ecosystem entities based on the number of ac-
tive contributors and the number of active projects specified by the PPC.
In this process, each project is randomly assigned a contributor to secure its
activeness in the ecosystem simulation. In the second step, we use the ex-
ponential random variable f(z) = [e™*] for z > 0, to determine the number
of projects that the contributors work on. The function f(z) generates ran-

13

Ruby PyPI

1 13
10000 | o
10000 | ° °
[+]
) 1000 | °,
S 1000 ?
g ?
L 100 |
“ 100
10 10 |
OG
wRe o o
1 L TT-O0000 1 _ s o———————J
1 10 100 1000 10000 1 10 100 1000 10000
Project # Project #

Figure 4: The distribution of contributor’s active project numbers for the Ruby and
PyPI ecosystem. The x-axis represents the number of contributor’s active projects and
the y-axis represents the frequency of such type of contributor in the ecosystem. Both
distributions follow power-law, indicating the majority of contributors have a small number
of contributors while the rest have a very large number of working projects.

dom numbers following the power-law distribution. This distribution stems
from the empirical results we observe in real OSS ecosystems, which show
the distribution of the contributor working project number follows power-law
(Figure 4). In the third step, each contributor utilizes p(7) to determine its
working projects. This is a random process, in which the working projects
are determined for each contributor in an iterative fashion.

4. Case Study Overview

4.1. Dataset

To collect projects and contributors for the Ruby ecosystem, we first
obtained a list of GitHub projects having Ruby as the main programming
language from GHTorrent’s (Gousios, 2013) latest data dump (release 2019-
06-01). The Github projects used for the PyPI ecosystem were acquired from
the dataset provided by Valiev et al. (Valiev et al., 2018), which was collected
as of March 2018 from the PyPI registry of Python packages. Similar to Con-
stantinou and Mens (Constantinou and Mens, 2017b), we applied filters on
the Ruby projects acquired from GitHub. More specifically, we 1) elimi-
nated all forked projects, as many of them are created for contributing back
to forked projects (Jiang et al., 2017), and 2) eliminated projects with less
than three contributors and /or containing less than five commits, because we

14

would like to focus on non-trivial (e.g., not personal or experimental) projects
in the ecosystem. In the end, we cloned a total of 102,447 Ruby projects and
69,311 PyPI projects and collected data (i.e., author, commit date, project)
on 12,267,933 commits from projects in the Ruby ecosystem and 1,459, 322
commits from projects in the PyPI ecosystem. These commits involve a total
of 259,573 contributors in the Ruby ecosystem and 77,537 contributors in
the PyPI ecosystem.

In this work, we focus on the dynamics and statistics of the two considered
ecosystems in two selected time periods, i.e., 2008-01-01 to 2018-12-31 for
the Ruby ecosystem, and 2008-01-01 to 2017-12-31 for the PyPI ecosystem.
We do not study the Ruby ecosystem after 2019 because our projects are
selected based on the 2019-06-01 GHTorrent data dump, i.e., we do not have
all the projects created after 2019-06-01. Moreover, we need a period long
enough to ensure the status of projects in each considered period is correct.
For instance, determining whether a project was abandoned in May of 2019
relies on observation after 2019-06-01, which is not included in our dataset.
For similar reasons, we only report the statistics of the PyPI ecosystem before
2018. All commits in the two target time periods are split into time intervals
of six-months, where two adjacent time intervals have an overlap of three
months. For instance, the first four time intervals for the Ruby ecosystem
capture the ecosystem’s statistics based on commits submitted between 2008-
01-01 to 2008-06-31, 2008-04-01 to 2008-09-31, 2008-07-01 to 2008-12-31, and
2008-10-01 to 2009-03-31, respectively. The overlapping intervals allow us
to mitigate the influence of commits submitted near the boundary of time
intervals. Based on the above setup, we created 43 time intervals for the
Ruby ecosystem (three in each year), and 39 time intervals for the PyPI
ecosystem.

4.2. Prevalence of Contributor Loss and Project Fxtinction in the Ruby and
PyPI Ecosystems

Figure 5a and Figure 5b show the dynamics of basic project and con-
tributor statistics for the Ruby and PyPI ecosystems, based on our collected
commits. We observe a clear rise-and-drop pattern in terms of active projects
and contributors in the evolution of the Ruby ecosystem. On the other hand,
the PyPI ecosystem grows rapidly before 2016 and becomes stable afterwards.
The results also show that in both ecosystems there is a large proportion of
active contributors and projects leaving the ecosystem in each time interval.

15

50000
— Active Project #

- - Active Contributors #
— New Projects #

- - New Contributors # -
Project Abandoments # e mst
Contributor Leave # -

37500

25000

12500

0 e T

® © O
$ & &
P

7y
7
€
,7

@
N A)
a) The evolution of the Ruby ecosystem.

30000

— Active Project #

- - Active Contributors #
— New Projects #

22500 - New Contributors #
Project Abandoments #
Contributor Leave #

15000

7500

(b) The evolution of the PyPI ecosystem.

Figure 5: The evolution of the Ruby and PyPI ecosystems. The x-axis represents time
intervals of six months (time intervals are displayed every three intervals), and the y-
axis represents quantities of the displayed metrics. The legend of the figure outlines six
ecosystem metrics.

Figure 6 shows how contributor turnover ratio and project extinction
ratio change over time in the Ruby and PyPI ecosystems. We observe that
contributor turnover happens frequently with a 20%-60% turnover ratio in
both ecosystems. We also observe that the two target ecosystems respond to
the loss of their contributors differently in terms of project extinction. We
observe that the Ruby ecosystem has a much higher contributor turnover
rate (ref. solid lines in Figure 6) but a similar project abandonment rate
(ref. dashed lines in Figure 6) compared to the PyPI ecosystem.

We also apply the robustness model defined in Section 3 on the 43 time

16

intervals of the Ruby ecosystem and 39 time intervals of the PyPI ecosystem
to capture the evolution of the two ecosystems over ten years. The com-
mits in each time interval are the source for creating the temporary project
contributor graph.

Our robustness model requires two inputs, i.e., an order of contributor
removal and the number of runs of the primary extinction simulation. The
robustness value is the averaged area under the curve generated by repeating
the primary extinction simulation 1,000 times. The number 1, 000 is chosen
following previous studies (Dunne et al., 2002), as well as our observation
that the robustness value becomes stable after 1,000 runs of the primary
extinction simulation.

The red lines in Figure 11 describe the ecosystem robustness value under
random contributor removal for the Ruby and PyPI ecosystems. The value
characterizes the robustness of the ecosystem to the random loss of contrib-
utors. The results indicate that the Ruby ecosystem has a higher robustness
compared to PyPI. Ruby’s higher robustness value explains why, although
the fraction of contributor loss is always higher in the Ruby ecosystem than
in PyPI, Ruby can maintain the same level of project extinction as PyPI
(Figure 6).

100%

— Ruby Contributor Turnover Rate
== Ruby Project Abandonment Rate
80% | — PyPl Contributor Turnover Rate
- - PyPI Project Abandonment Rate

60%
X
40%

20%

Figure 6: The evolution of ecosystem-level contributor turnover/project abandonment
rate. The x-axis represents time intervals of six months (time intervals are displayed every
two intervals), and the y-axis represents ratios which are calculated as follows. For a
specific time interval ¢, the contributor turnover rate is defined as Leavers(t) divided by
ActiveContr(t) and the project turnover rate is defined as ObsoleteProjects(t) divided
by ActiveProjects(t).

17

The above analysis shows that contributor turnover and project aban-
donment frequently happen in the Ruby and PyPI ecosystems. Moreover,
two considered ecosystems show different robustness to contributor loss in
terms of project extinction.

4.8. Research Questions

To demonstrate the usage of the proposed analytical framework char-
acterizing the robustness of OSS ecosystems, we propose the following three
research questions to guide our case study on the Ruby and PyPI ecosystems.

RQ1: How robust are Ruby and PyPI ecosystems to the random loss of
contributors? The loss of contributors is a widespread phenomenon in OSS
ecosystems (ref. Figure 6). This phenomenon usually accompanies the frac-
tion of ecosystem projects that are at risk of being left unmaintained. In
this RQ, by leveraging our proposed computational framework in Section 3,
we aim to answer how the robustness of two target OSS ecosystems changes
over time. We also evaluate the impact of excluding short-term contributors
on the robustness results.

RQ2: How will the topological properties of an OSS ecosystem affect its ro-
bustness to the random loss of contributors? A subsequent question of RQ1
is to investigate which factors can influence ecosystem robustness. As men-
tioned in Section 2 and Section 3, a network’s overall topological charac-
teristics determine how it reacts to contributor loss. Thus, in this RQ, we
further examine the extent to which OSS ecosystem robustness can be af-
fected by these properties (i.e., PPC and preferential attachment degree) via
simulation studies.

RQ3: How robust are Ruby and PyPI ecosystems to specific types of contrib-
utor loss? The above experiments assume the departure of contributors is
purely random, whereas this assumption is not consistent with reality. Ex-
isting work has been done demonstrating that contributors with lower con-
tribution intensity may leave the ecosystem earlier. Therefore, in this RQ,
we extend the random process of contributor removal to reflect some of the
contributor’s characteristics (e.g., number of commits and number of active
projects). This extension allows us to quantify the association between each
characteristic of the contributor and the ecosystem robustness, allowing us
to distinguish critical contributor characteristics from others.

18

5. Results and Analysis

5.1. RQ1: How robust are Ruby and PyPI ecosystems to the random loss of
contributors?

Methods: We apply the robustness model defined in Section 3 on the 43
time intervals of the Ruby ecosystem and 39 time intervals of the PyPI
ecosystem to capture the evolution of the two ecosystems over ten years.
The commits in each time interval are the source for creating the temporary
project contributor graph.

Our robustness model requires two inputs, i.e., a mechanism determining
the order of removal and the number of runs of the primary extinction simula-
tion. In this RQ, the order of contributor removal for each primary extinction
simulation is formed by randomly permutating all active contributors in the
ecosystem. We then calculate the robustness of each OSS ecosystem based on
1,000 runs of the primary extinction simulation. The number 1,000 is picked
following previous studies (Dunne et al., 2002), as well as our observation
that the robustness value follows a normal distribution after 1,000 runs of
the primary extinction simulation.

Results: We present the evolution of the software ecosystem robustness of
the Ruby and PyPI ecosystems in Figure 7 (Original). Figure 7 indicates that
the robustness of the two ecosystems evolves over time. Both ecosystems saw
a decrease in robustness from 2013 onward. We also observe that the Ruby
ecosystem has larger robustness values than the PyPI ecosystem across all
considered time intervals, i.e., the PyPI ecosystem is more fragile to the loss
of its contributors (in terms of retaining active projects). This result explains
why the PyPI ecosystem has a much higher contributor turnover rate than
the Ruby ecosystem, but has a similar project abandonment rate (Figure 6).

When applying the proposed OSS robustness computational framework
to the PyPI ecosystem and the Ruby ecosystem, we include short-term con-
tributors and projects by default. However, in practice, researchers and OSS
maintainers may have different preferences in keeping or discarding short-
term contributors and projects. Thus, to investigate the potential impact
of removing short-term contributors and projects, we generate four more
datasets per ecosystem, each containing commits after the removal of short-
term contributors or short-term projects. The results are shown in Fig-
ure 7 using dotted lines and dashed lines. We define short-term contribu-
tors/projects based on the time duration between their first and last observed
commit in our dataset. Our experimental results show that removing short-

19

Ruby PyPI

0.75 — Original — Original
C-30 days C-30 days
-+ C-90 days -- C-90 days
0.7 P-30 days P-30 days
3 . == P-90 days -- P-90 days
0.65
0.6
0.55 R

DD ,0N D L0040, O L0 N LE LM L0 L0 A
PP A0 X AP 2PN 20 2O A AO P P P A AP AP A X8 A8 X
PEFTEFTE TS LTSS S S S S o o

Figure 7: The evolution of the robustness value for the Ruby and PyPI ecosystems. The
yellow dotted line (C-30) represents ecosystem robustness when considering only contrib-
utors with an active time greater than 30 days, the blue dotted line (C-90) represents
ecosystem robustness when considering only contributors with an active time greater than
90 days. Similarly, the yellow dashed line (P-30) represents ecosystem robustness when
considering only projects with an active time greater than 30 days, and the blue dashed
line (P-90) represents ecosystem robustness when considering only projects with an active
time greater than 90 days.

term contributors and projects does not affect the evolution trends of the
two ecosystems’ robustness values.

Summary: The robustness of the Ruby and PyPI ecosystems to the
loss of contributors is different. The project abandonment rate reflects
that a robust ecosystem can afford to lose more contributors than a less
robust ecosystem. Our results indicate that the proposed simulation-
based metric can reflect the difference in robustness effectively.

5.2. RQ2: How will the topological properties of an OSS ecosystem affect its
robustness to the random loss of contributors?

Methods: Determining the impact of network properties on ecosystem ro-
bustness requires obtaining data with various such properties. However, this
requirement is not always possible. We therefore generate synthetic data,
thereby reducing the study’s dependence on real data. As opposed to em-

20

pirical analysis, this type of research does not require ecosystem data. We
first need insights into how ecosystems are formed. Based on these insights,
synthetic ecosystems can be produced using the generative process defined
in Section 3.4.

We set up two ecosystem simulations to verify how different ecosystem
properties affect ecosystem robustness. Experiment one verifies the relation-
ship between PPC and the robustness of the ecosystem, we fix the number
of active projects to 10,000. By setting the number of active contributors
to 6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, and 14,000, we

o : 10,000 10,000 10,000 10,000
obtain nine different PPC parameters {555 =500+ 000+ -+ 147000}. At the

same time, we look at five curving parameter settings {0.6,0.8,1.0,1.2,1.5}.
The Cartesian product of PPC and curving parameter yields 9 x 5 = 45 pa-
rameter combinations in total. For each parameter combination, we produce
32 artificial ecosystems and measure the corresponding robustness values us-
ing 1000 primary extinctions.

Experiment Two verifies the relationship between the degree of preferen-
tial project participation of contributors and the robustness of the ecosystem.
We adjust the curving parameter {0.1,0.5,1.0,1.5,2.0,2.5,3.0} to manipu-
late the power-law distribution of preferential project participation. At the
same time, we repeat the process for each of three PPC values, obtained from
a project number of 10,000 and contributor numbers {8000, 10000, 12000}, to
confirm whether the correlation is consistent under different PPC conditions.
Results: The results of the two experiments indicate the increase of either
PPC (Figure 8-A) or Curving parameters (Figure 8-B) decreases the robust-
ness of the OSS ecosystem against the loss of contributors. How do these
two factors work to affect ecosystem robustness?

The results in Figure 8-C suggest the PPC parameter is positvely corre-
lated with the power-law distribution coefficient A. Considering the increase
of A leads to the decreases of the overall ecosystem robustness (Figure 8-D),
the rise of PPC could also lead to the decreases of the overall ecosystem ro-
bustness. This result provides a new insight into how the growth of ecosystem
scale could impact ecosystem robustness. A dramatic increase in the number
of projects in the ecosystem leads to a significant increase in the average
number of projects that contributors need to maintain. Compounded by the
fact that contributors prefer larger projects when selecting projects, smaller
projects are more vulnerable to the increase of PPC and eventually compro-
mise overall ecosystem robustness.

21

0.8

0.7

Robustness

0.6

0.5

1.5

0.5

Figure 8: Results of the software simulation study. A) Ecosystem averaged workload,
indicated by PPC, mitigates ecosystem robustness. B) Curving parameter compromises
ecosystem robustness. C) PPC and the curving parameter promote the A coefficient. D)

[]
0]
]
"'! [: : M
0]
1
® curve=0.6
curve=0.8
curve=1.0
® curve=1.2
® curve=15
1 1.5 2
PPC
|
|
it ! L
e .
0 (]
1 !
|
'I i ® curve=0.6
.I curve=0.8
curve=1.0
® curve=1.2
® curve=15
1 1.5 2
PPC

Robustness

Robustness

0.8

0.7

0.6

0.5

0.8

0.7

0.6

0.5

® PPC=1.25
PPC=1.0
® PPC=0.83

05 10 15 20 25 3.0

Curve

g

® curve=0.6
curve=0.8
curve=1.0
® curve=1.2
® curve=1.5

1 1.5 2
A

The increase of the A coefficient reduces the robustness of the system

Further ecosystem simulations are performed to verify the impact of
ecosystem growth in scale, wherein the number of projects and contributors
grow at the same time. Instead of growing ecosystem scale while changing
PPC, this experiment grows the ecosystem while maintaining the PPC pa-
rameter. The results in Figure 9 show the averaged robustness across 32
simulation runs is consistent for ecosystems at different scales, and the con-

sistency is not disrupted by the tuning of the curving parameter.

22

0.70

B P#8000/C#8000
B P#9000/C#9000
o 0.69 [l P#10000/C#10000
& P#11000/C#11000
2 B P#12000/C#12000
3 0.68
Q
o
o
9 067
©
g
< 0.66
0.65

0.8 1.0 1.2
Curving Parameter

Figure 9: The scale of the OSS ecosystem will not affect robustness. For each curving
parameter in {0.8,1.0, 1.2} (represented in x-axis), we simulate five ecosystems at different
scales (differentiated by color). In the figure, P# represents the number of projects and
C# represents the number of contributors. The PPC values for all five ecosystems equal
to 1, indicating the averaged workload of all ecosystem simulations are identical. The
result shows the impact of the average workload of ecosystem contributors is not varied
across ecosystems of different scales.

Summary: By using ecosystem simulation studies, we confirm two net-
work characteristics that jeopardize ecosystem robustness: the increase
of preferential project participation and the growth of contributors’
average project number. The increased preference of contributors to
participate in large projects is the fundamental reason for reducing
ecosystem robustness. An increase in contributors’ average project
number negatively impacts ecosystem robustness through this funda-
mental cause.

5.83. RQ3: How robust are Ruby and PyPI ecosystems to specific types of
contributor loss?

Methods: The role of randomness in OSS environments is undoubtedly
significant, but it’s not strictly random. In this research question, we analyze
the robustness of OSS ecosystems to specific types of contributor loss.

We evaluate the characteristics of contributors who leave and those who
stay using statistical techniques. We first categorize contributors into two

23

groups: those who exit the community (Leavers(t)) and those who remain
inside the community (ActiveContr(t) — Leavers(t)) during the next time
interval. We then evaluate how “leavers” and “stayers” vary in the numbers
of projects and commits they make to the ecosystem by running a Mann-
Whitney test. The results shown in Table 2 indicate the numbers of projects
and commits in the “leaver” group are both significantly lower than those in
the “stayer” group (p <0.001, Mann-Whitney U test).

Table 2: Mann-Whitney test for the Ruby and PyPI ecosystems from 2017-7 to 2017-
12. For the Mann-Whitney test, effect size is given by the rank biserial correlation. For
all tests, the alternative hypothesis specifies that group ActiveContr(t) — Leavers(t) is
greater than group Leavers(t).

Ecosystem Variable p Hodges-Lehmann Rank-Biserial
Estimate Correlation
PyPI Project# < .001 5.330e-5 0.240
Commit# < .001 2.000 0.364
Ruby Project# < .001 7.276e-5 0.253
Commit# < .001 3.000 0.396

Motivated by the above results, we propose two weighted-random contrib-
utor loss generation methods to allow our robustness computational frame-
work to consider specific characteristics of contributors while performing
primary extinction simulations. When we generate a random contributor
removal order, we manipulate the generation of the random sequence by
setting weights for each contributor.

Here, we investigate the impact of two contributor characteristics, in-
cluding the number of commits and the number of projects. We use these
two measures as contributor weights in order to generate random sequences
while considering weights. Individuals with higher (or lower) weights are
given a higher probability of being removed first. We summarize all men-
tioned contributor removal methods, including weighted-random contributor
loss generation methods and random contributor removal, in Table 3. For
each characteristic, we generate two modes of weighted random removal. The
first mode is high-yield prioritized, where contributors with higher weights
have a higher probability of being removed first, and the second mode is
low-yield prioritized, where contributors with lower weights have a higher
likelihood of being removed first.

Figure 10 compares the robustness of the Ruby and PyPI ecosystems un-

24

Table 3: Five contributor removal generative methods.

Index Characteristic Mode Abbreviation
1 Project Number High-yield prioritized P+# H to L

2 Project Number Low-yield prioritized P# L to H

3 Commit Number High-yield prioritized C# H to L

4 Commit Number Low-yield prioritized L# L to H

5 - Random R

der five contributor loss mechanisms using one snapshot (2017 — 07 — 01 to
2017 — 12 — 31). The results indicate that secondary extinctions of the two
ecosystems vary among different types of contributor removal sequences when
contributors are removed according to a weighted-random process. Specifi-
cally, we find (1) both the Ruby and PyPI ecosystems are more robust to the
random removal of contributors than to the active contributor prioritized
removal method, (2) removing the least active contributors first results in
minimal secondary extinctions, which are even lower than those seen with
random contributor removals. We replicate the analysis over all time in-
tervals. As shown in Figure 11, the divergence under different contributor
removal strategies is consistent with the result derived from a single time
interval.

We observe that applying different modes of removal with regard to the
same characteristic produces different robustness values, which we believe is a
reflection of the correlation between the selected characteristic and ecosystem
robustness. Random contributor removal provides a baseline for robustness
analysis due to its purely random nature. If weighted contributor removal
generated by a characteristic yields a similar robustness value to this baseline,
this characteristic cannot be used to discover contributors with a higher
impact on robustness because the weights generated by the characteristic
are no different from complete randomness. Conversely, deviation from the
baseline indicates that the characteristic is relevant to ecosystem robustness
because the weights generated by the characteristic can reduce ecosystem
robustness values by prioritizing the removal of high-value contributors. The
experimental results in Figures 10 and 11 suggest that the two characteristics
we investigate produce large deviations from baseline robustness in both
ecosystems, implying that a high commit number and a high project number
are common characteristics of key contributors in maintaining ecosystem
robustness. In addition to the two features mentioned above, this robustness

25

evaluation approach based on weighted random removal has the potential to
be applied to analyze other characteristics in order to verify whether a certain
contributor characteristic is associated with the robustness of the ecosystem
to contributor removal.

1 g
ST A W B
~ NN\ &
X 08 | “~ L AN
g ~ \ .
2 ~ \ [N
X ~ \ ~»
EO.G I ~ i \ LY
= N “ \ .
2 ™ A \ LN
3 ~
w 04 | R \\ A 3 \\ .
B - | \
2 -- P#LtoH N ¥ SO\
& 02 | P#HtoL S SO\
G#LtoH N\ AN
o LootHoL o \

0 02 04 06 08 1 0 02 04 06 08 1

Contributor Removal x100% Contributor Removal x100%

Figure 10: Results of primary extinction simulations under five types of contributor re-
moval mechanisms for the A) Ruby and B) PiPy ecosystems, including random order
removal (red solid line), project number weighted random order removal (blue and yellow
dashed lines), and commit number weighted random order removal (blue and yellow solid
lines). “H to L” indicates that contributors with a higher commit/project number are
more likely to be removed first and “L to H” indicates contributors with a lower com-
mit/project number are more likely to be removed first.

We define two types of contributor removal methods, including random
contributor removal and weighted random contributor removal with regard to
contributor characteristics. Which method best represents actual ecosystem
robustness? We find that both ecosystems are less robust to the prioritized
removal of high-yield contributors than to the prioritized removal of low-yield
contributors. Since random contributor removal removes high- and low-yield
contributors in equal proportions, the robustness of the ecosystem to random
contributor removal falls somewhere between the robustness produced by the
weighted-random contributor removal methods. The statistical test results
recorded in Table 2 indicate that the actual workload of contributors leaving
the ecosystem, including the number of projects or commits, is significantly
lower than that of contributors staying in the ecosystem. Therefore, we can
conclude that the actual robustness is higher than the robustness value gener-
ated by the random contributor removal model and lower than the robustness

26

0.9

’ A — R B
PR TEY VY AR -- P#LtoH
08 | ~—Tw e B P#HtoL
C#LtoH
30.7 /\'\/WJ—'\A,\,W "f‘-,‘!u-.___ci?HtoL
2 ==
B 06 | .
a 1 S ———
€ o5 |
: N B
_//M"]\ (AN B NP
04 | u -\, / I
=7\ [/
e o] b
Time Intervals Time Intervals

Figure 11: The evolution of the robustness values of five contributor loss mechanisms. Five
contributor removal mechanisms are investigated for the A) Ruby and B) PyPI ecosys-
tems, including random order removal (red solid line), project number weighted random
order removal (blue and yellow dashed lines), and commit number weighted random order
removal (blue and yellow solid lines).

generated by the priority removal of low-productivity contributors.

For practical analysis, we suggest using the ensemble of system robustness
based on multiple contributor removal methods in conjunction with ecosys-
tem contributor loss characteristics. For instance, we estimate the robustness
of the Ruby and PyPI ecosystems to be between the robustness produced by
the random and low-productivity prioritized contributor removal methods,
because the workload of contributors who actually leave the ecosystem is
significantly less than that of other contributors. Suppose the workload of
the contributor who actually leaves the ecosystem is significantly larger than
that of the other contributors. In this case, we suggest it is more sensible to
estimate the robustness of the ecosystem to fall between the robustness pro-
duced by the random and the high-yield contributor prioritized contributor
removal methods.

27

Summary: Weighted random contributor removal methods allow us
to measure the robustness of the ecosystem under different contribu-
tor characteristics. We test two ecosystem contributor characteristics,
namely the number of projects and the number of commits made. The
results suggest that ecosystem robustness is very sensitive to the loss
of contributors with a high number of projects or a high number of
commits.

6. Threats to Validity

Internal Threats. One of the main internal threats to validity arises from
splitting the commits data into six-month intervals. Although this setup
has been previously used in evolution studies (Miller et al., 2019), varying
the time interval duration might impact the findings reported in RQs. To
mitigate this threat, we set a three-month overlapping period between two
consecutive time intervals. In future work, we would investigate the potential
impact of this setup on our findings.

External Threats. Our findings are based on the exploratory study of two
ecosystems. Thus, they might not represent characteristics of robustness to
contributor loss in other ecosystems. We plan to apply our analysis methodol-
ogy to other ecosystems in future work. Nevertheless, we believe the network
simulation experiments in RQ2 are general and the proposed methodology
can be easily extended or adapted for a similar purpose. Following the per-
ils of mining GitHub data outlined in (Kalliamvakou et al., 2016), we also
applied several filters to filter out projects based on their commit number
and contributor number. Although we applied several manually defined pre-
processing steps on raw data, these metrics are often considered to remove
random and trivial projects when analyzing OSS projects on GitHub (Con-
stantinou and Mens, 2017b).

7. Conclusion

In this paper, we introduce a computational framework that can quantify
an OSS ecosystem’s robustness to the loss of contributors. We also design
a novel approach to synthesize bipartite graphs that mimic the relationship
between contributors and projects in an OSS ecosystem.

28

We conduct an exploratory study on two popular OSS ecosystems, the
Ruby ecosystem and the PyPI ecosystem, based on a ten year span of com-
mit history extracted from 102,447 Ruby projects and 69,311 PyPI projects
hosted on GitHub. We show that (1) contributor turnover and project aban-
donment happen frequently in both ecosystems, (2) the Ruby ecosystem is
more robust than the PyPI ecosystem to the random loss of contributors, (3)
the robustness of the two ecosystems has evolved over time, (4) the preference
of developers to contribute to large projects in an OSS ecosystem negatively
affects the robustness of the ecosystem, and (5) both ecosystems are less ro-
bust to the loss of active contributors who either intensively or extensively
contribute to the ecosystem than the random loss of contributors.

In the future, we would like to extend our methodology to analyze more
ecosystems and investigate the impact of other factors on OSS ecosystem
maintenance and resilience when subject to different types of risk.

References

Ali, R.H., Parlett-Pelleriti, C., Linstead, E., 2020. Cheating death: A statis-
tical survival analysis of publicly available python projects, in: Proceedings
of the 17th International Conference on Mining Software Repositories, pp.
6-10.

Apache Log4j, 2021. Apache Log4j Security Vulnerabilities.
https://logging.apache.org/log4j/2.x/security.html?spm=a2c4g.
11174386.n2.4.56b74c07jouc89. Online; accessed 20 Feb 2022.

Avelino, G., Constantinou, E., Valente, M.T., Serebrenik, A., 2019. On
the abandonment and survival of open source projects: An empirical in-
vestigation, in: 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), IEEE. pp. 1-12.

Bao, L., Xia, X., Lo, D., Murphy, G.C., 2019. A large scale study of long-time
contributor prediction for github projects. IEEE Transactions on Software
Engineering .

Barabasi, A.L., et al., 2016. Network science. Cambridge university press.

Blincoe, K., Harrison, F., Kaur, N., Damian, D., 2019. Reference coupling:
An exploration of inter-project technical dependencies and their charac-

29

teristics within large software ecosystems. Information and Software Tech-
nology 110, 174-189.

Burgos, E., Ceva, H., Perazzo, R.P., Devoto, M., Medan, D., Zimmermann,
M., Delbue, A.M., 2007. Why nestedness in mutualistic networks? Journal
of theoretical biology 249, 307-313.

Cai, Q., Liu, J., 2016. The robustness of ecosystems to the species loss of
community. Scientific reports 6, 35904.

Carlson, J.M., Doyle, J., 2002. Complexity and robustness. Proceedings of
the national academy of sciences 99, 2538-2545.

Coelho, J., Valente, M.T., 2017. Why modern open source projects fail, in:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 186-196.

Constantinou, E., Mens, T., 2017a. An empirical comparison of developer
retention in the rubygems and npm software ecosystems. Innovations in
Systems and Software Engineering 13, 101-115.

Constantinou, E., Mens, T., 2017b. Socio-technical evolution of the ruby
ecosystem in github, in: 2017 IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), IEEE. pp. 34-44.

Cosentino, V., Izquierdo, J.L.C., Cabot, J., 2015. Assessing the bus factor of
git repositories, in: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), IEEE. pp. 499-503.

Cutter, S.L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., Webb,
J., 2008. A place-based model for understanding community resilience to
natural disasters. Global environmental change 18, 598-606.

Dunne, J.A., Williams, R.J., Martinez, N.D., 2002. Network structure and
biodiversity loss in food webs: robustness increases with connectance. Ecol-
ogy letters 5, 558-567.

Ehls, D., 2017. Open source project collapse—sources and patterns of failure

30

Etemadi, V., Bushehrian, O., Robles, G., 2022. Task assignment to counter
the effect of developer turnover in software maintenance: A knowledge
diffusion model. Information and Software Technology 143, 106786.

Foucault, M., Palyart, M., Blanc, X., Murphy, G.C., Falleri, J.R., 2015.
Impact of developer turnover on quality in open-source software, in: Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering, pp. 829-841.

Gousios, G., 2013. The ghtorrent dataset and tool suite, in: Proceedings
of the 10th Working Conference on Mining Software Repositories, IEEE
Press, Piscataway, NJ, USA. pp. 233-236. URL: http://dl.acm.org/
citation.cfm?id=2487085.2487132.

Guillaume, J.L., Latapy, M., 2006. Bipartite graphs as models of complex
networks. Physica A: Statistical Mechanics and its Applications 371, 795—
813.

[zquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona, J.M.,
2009. Using software archaeology to measure knowledge loss in software
projects due to developer turnover, in: 2009 42nd Hawaii International
Conference on System Sciences, IEEE. pp. 1-10.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L., 2017. Why
and how developers fork what from whom in github. Empirical Software
Engineering 22, 547-578.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M.,
Damian, D.; 2016. An in-depth study of the promises and perils of mining
github. Empirical Software Engineering 21, 2035-2071.

Lin, B., Robles, G., Serebrenik, A., 2017. Developer turnover in global, in-
dustrial open source projects: Insights from applying survival analysis, in:
2017 IEEE 12th International Conference on Global Software Engineering
(ICGSE), IEEE. pp. 66-75.

Lungu, M., 2008. Towards reverse engineering software ecosystems, in: 2008
IEEE International Conference on Software Maintenance, IEEE. pp. 428—
431.

31

Marsan, J., Templier, M., Marois, P., Adams, B., Carillo, K., Mopenza, G.L.,
2018. Toward solving social and technical problems in open source software

ecosystems: using cause-and-effect analysis to disentangle the causes of
complex problems. IEEE Software 36, 34—41.

Mens, T'., 2016. An ecosystemic and socio-technical view on software mainte-
nance and evolution, in: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE. pp. 1-8.

Mens, T., Claes, M., Grosjean, P., Serebrenik, A., 2014. Studying evolv-
ing software ecosystems based on ecological models, in: Evolving software
systems. Springer, pp. 297-326.

Miller, C., Widder, D.G., Kastner, C., Vasilescu, B., 2019. Why do people
give up flossing? a study of contributor disengagement in open source,
in: IFIP International Conference on Open Source Systems, Springer. pp.
116-129.

Nassif, M., Robillard, M.P., 2017. Revisiting turnover-induced knowledge loss
in software projects, in: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE. pp. 261-272.

Pfeiffer, R.H., 2021. Identifying critical projects via pagerank and truck fac-
tor, in: 2021 IEEE/ACM 18th International Conference on Mining Soft-
ware Repositories (MSR), IEEE. pp. 41-45.

Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S., 2017. The multilayer nature
of ecological networks. Nature Ecology & Evolution 1, 1-9.

Pocock, M.J., Evans, D.M., Memmott, J., 2012. The robustness and restora-
tion of a network of ecological networks. Science 335, 973-977.

Rigby, P.C., Zhu, Y.C., Donadelli, S.M., Mockus, A., 2016. Quantifying and
mitigating turnover-induced knowledge loss: case studies of chrome and a
project at avaya, in: 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), IEEE. pp. 1006-1016.

Runkel, P.J., McGrath, J.E., 1972. Research on human behavior: A system-
atic guide to method. Holt, Rinehart & Winston of Canada Ltd.

32

Schilling, A., Laumer, S., Weitzel, T., 2012. Who will remain? an evaluation
of actual person-job and person-team fit to predict developer retention in
floss projects, in: 2012 45th Hawaii International Conference on System
Sciences, IEEE. pp. 3446-3455.

Schneider, 7., 2018. event-stream vulnerability explained. https://
schneider.dev/blog/event-stream-vulnerability-explained/. [On-
line; accessed 19-July-2020].

Setamanit, S.o., Wakeland, W., Raffo, D., 2007. Using simulation to evaluate
global software development task allocation strategies. Software Process:
Improvement and Practice 12, 491-503.

Stol, K.J., Fitzgerald, B., 2018. The abc of software engineering research.
ACM Transactions on Software Engineering and Methodology (TOSEM)
927, 1-51.

Torchiano, M., Ricca, F., Marchetto, A., 2011. Is my project’s truck fac-
tor low? theoretical and empirical considerations about the truck factor
threshold, in: Proceedings of the 2nd international workshop on emerging
trends in software metrics, pp. 12-18.

Tsigkanos, C., Pasquale, L., Menghi, C., Ghezzi, C., Nuseibeh, B., 2014.
Engineering topology aware adaptive security: Preventing requirements
violations at runtime, in: 2014 IEEE 22nd International Requirements
Engineering Conference (RE), IEEE. pp. 203-212.

Valiev, M., Vasilescu, B., Herbsleb, J., 2018. Ecosystem-level determinants of
sustained activity in open-source projects: A case study of the pypi ecosys-
tem, in: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 644-655.

Wang, J., Jiang, C., Qian, J., 2014. Robustness of internet under targeted
attack: a cascading failure perspective. Journal of Network and Computer
Applications 40, 97-104.

Williams, L., Kessler, R.R., 2003. Pair programming illuminated. Addison-
Wesley Professional.

33

Zazworka, N., Stapel, K., Knauss, E., Shull, F., Basili, V.R., Schneider, K.,
2010. Are developers complying with the process: an xp study, in: Pro-
ceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 1-10.

Zemlin, J., 2017. If you can’t measure it, you can’t improve it: Chaoss
project creates tools to analyze software development and measure open
source community health.

34

