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Abstract

This dissertation investigates the application of persistent homology to the analysis of
stratified spaces, focusing on word embeddings as a case study. Stratified spaces present
unique challenges for traditional topological data analysis techniques, particularly in iden-
tifying and analyzing singularities. To address these challenges, we discuss persistent
intersection homology and extend the concepts of kernel, image, and cokernel persistence.
We also present a novel approach to analyzing singularities using bifiltrations and sliding
window (co)kernel diagrams. In addition, we discuss multiparameter persistence. These
tools allow for a more nuanced analysis, enabling the differentiation of various types of
singularities, such as those associated with polysemous words in word embeddings.
We demonstrate the practical utility of these theoretical advancements through compu-

tational pipelines and experiments on word embeddings, specifically analyzing how dimen-
sionality reduction techniques influence the topology of local neighborhoods. The results
indicate that our methods can reveal significant structural differences in word embeddings,
offering new insights into their topological properties.
This work advances the theoretical understanding of persistent homology in stratified

spaces and opens new avenues for applying these techniques to other complex, high-
dimensional datasets. We conclude with a discussion of potential future research direc-
tions, including extending these methods to multifiltrations, exploring different invariants,
and broader applications beyond word embeddings.
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1 Introduction

Many real-world, high-dimensional datasets are commonly assumed to reside on low-
dimensional manifolds embedded within the high-dimensional space. Persistent homology
can be successfully employed in such cases to extract features, remove noise, and compare
data sets [23]. However, challenges arise when the data represents several manifolds of
possibly varying dimensions.
For example, when considering word embeddings, it has been argued that word vectors

lie on a pinched manifold, that is the quotient of a manifold obtained by identifying some
of its points [38]. These singular points correspond to polysemous words, i.e., words
with multiple meanings, which suggests that monosemous and polysemous words can be
differentiated based on the topology of their neighborhoods.
Persistent homology, however, is often unable to detect the topology of such singular

neighborhoods. For instance, when computing the Vietoris-Rips complex of a point cloud,
it becomes impossible to identify singularities using only homological methods [63]. Fur-
thermore, certain desirable properties, such as Poincaré duality, generally fail for spaces
that are not a manifold.
Some of the challenges mentioned earlier can be addressed by loosening the assumption

that data resides on a single manifold and instead considering that data may exist in a
stratified space. A stratified space is, in simple terms, a collection of manifolds with poten-
tially different dimensions that are “glued together” in a well-behaved manner. However,
fewer methods are available for analyzing data under this assumption.
This dissertation aims to bridge the gap between topological data analysis and the study

of stratified spaces. It is organized into three main sections. First, we provide the theoret-
ical background necessary for our work, offering an accessible and intuitive introduction
to stratified spaces and intersection homology. We also discuss kernel, image, and cokernel
persistence and demonstrate how they can be used to analyze singularities. Additionally,
we provide a brief overview of multiparameter persistence. Next, we present computational
methods for analyzing singularities in datasets using the theoretical framework outlined in
the previous section. Finally, we apply these techniques to the study of word embeddings.

1.1 Contributions

We present several key contributions that advance theoretical understanding and compu-
tational techniques in the study of stratified spaces using persistent homology.

Theoretical Contributions

1. We introduce a general partial order on perversities, which induces an inclusion of
intersection chain complexes and subsequently leads to a homomorphism on inter-
section homology.

2. We propose the concepts of kernel, image, and cokernel persistence as novel tools
for constructing a bifiltration to analyze singularities.

3. We develop the idea of sliding window (co)kernel diagrams to quantify the interac-
tion of singularities with the persistent homology of a space, thereby enabling the
differentiation of various types of singularities.

4. We present a new method for testing possible stratifications of data using kernel
persistence
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Computational Contributions

We introduce three computational approaches for analyzing singularities within datasets:

1. We use kernel, image, and cokernel persistence to identify which singularities signif-
icantly impact the persistent homology of the data.

2. We apply multiparameter persistence to construct candidate decompositions and
compute the invariants of the resulting bifiltration.

3. We leverage multiparameter persistence-based clustering and persistent intersection
homology to derive more refined topological invariants of stratified data.

Finally, we demonstrate the practical application of our methods through a case study
on word embeddings. We investigate and compare the local neighborhoods of two words,
examine the effect of dimensionality reduction on these neighborhoods, and differentiate
between their potential number of senses.

2 Theory

We begin by covering relevant theoretical background, starting with an introduction to
stratified spaces, intersection homology, and persistent intersection homology. We then
discuss kernel, image, and cokernel persistence. Finally, we briefly introduce multiparam-
eter persistence.

2.1 Stratified Spaces

Recall that a smooth manifold M is second countable Hausdorff topological space such
that for every point q in M , there exists a neighborhood U of q with a homeomorphism ϕ
mapping U to an open subset of Rn.

Figure 1: For every point q in M , there exists a neighborhood U of q with a homeomor-
phism ϕ mapping U to an open subset of Rn.

In other words, a manifold is a topological space that locally resembles Euclidean space
near each point.
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Figure 2: Some manifolds

If a topological space fails to be a manifold, it is because of the existence of singular
points that do not have Euclidean neighborhoods. For instance, consider the figure-8. It is
not a 1-manifold because the singular crossing point does not have a neighborhood home-
omorphic to R. However, every other point in the figure-8 does have such a neighborhood.
The figure-8 minus the crossing point is a 1-manifold, while the crossing point itself is a
0-manifold.

Figure 3: The figure-8

Stratified spaces generalize the concept of a manifold to address singular spaces. A
stratified space is a topological space that can be decomposed into manifold pieces of dif-
ferent dimensions (called strata), which “fit together nicely.” In general, a stratification
of a topological space X is a filtration by closed subsets,

X = Xm ⊇ Xm−1 ⊇ . . . ⊇ X0 ⊇ X−1 = ∅

such that Xi−Xi−1 is a (possibly empty) manifold for each i. The connected components
of the set Xi − Xi−1 are called strata. In this context, the dimension of points can vary,
which offers more flexibility than working with manifolds. However, the restrictions we
apply ensure that we focus on a relatively “nice” class of spaces, which are well-behaved
enough to exclude things like fractals. Given their ability to describe a broader range of
spaces, it has been argued that stratified spaces are ideal for analyzing real-world data
[72].
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Figure 4: Some stratified spaces

2.1.1 Historical Remarks

Partitioning a singular space into manifold-like pieces is not a new idea. However, the
study of how these strata fit together and the geometry of their neighborhoods is a more
recent development [37]. Before 1960, few mathematicians paid much attention to sin-
gular spaces. During this period, there was a remarkable surge in results concerning
manifolds, like Lefschetz theory, de Rham cohomology, Hodge theory, characteristic num-
bers, cobordism, the Hirzebruch-Riemann-Roch theorem, surgery, handlebodies, and the
Atiyah-Singer index theorem. The standard belief at the time was that if you had a
singularity, you should resolve it and get a manifold. [48].
However, spaces with singularities are both important and not always pathological. For

example, any manifold with a boundary is a stratified space consisting of two strata: the
boundary and the interior. Similarly, any polyhedron can be stratified in a reasonable way
[73]. The natural idea of dividing a singular space into manifolds was at least partially
realized in the study of simplicial complexes and regular cell complexes, even before the
notion of a manifold was well defined [33]. In fact, there were several early attempts to
triangulate algebraic sets, including Poincaré [61] and Lefschetz [44].
Though there are many different definitions of these kinds of spaces (for a survey see

[37]), we will use the one used by Goresky and MacPherson in [31] which works most
naturally with intersection homology, namely piecewise linear (PL) stratified pseudomani-
folds. To make the technical aspects of the definition more intuitive, we first discuss some
preliminary definitions and results.

2.1.2 Filtered Spaces

We introduce a series of definitions, starting with the most general: the filtered space.

Filtered Space [29]

A filtered space is a Hausdorff topological space X together with a sequence of
closed subspaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn−1 ⊆ Xn = X

for some integer n ≥ −1.

The space Xi is called the i-skeleton. The index i is called the formal dimension of
the skeleton. Note that it is possible to have Xi = Xi−1, the smallest index is always −1,
and X−1 is always empty. The connected components of Xi −Xi−1 are called the strata
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of X. If S ⊆ Xi − Xi−1 is a stratum of X, we say that S is a stratum of dimension i
and codimension n− i.

Example Recall that the i-skeleton of a simplicial complex is the subspace Xi formed
by taking the union of all the simplices in X that have dimensions up to i. Any finite-
dimensional simplicial complex is a filtered space, filtered by the i-dimensional skeleton.
In this setting, the strata are the open simplices (i.e. the interiors of the simplices) of X.
For example, consider the simplicial complex below.

Figure 5: Filtered space

Regular and Singular Strata
In the study of filtered spaces, the strata of the highest possible dimension are particu-

larly important.

Strata [29]

If X is a filtered space of dimension n, the components of Xn−Xn−1 are called the
regular strata of X, and all other strata are called singular strata. The union
of the singular strata, denoted by ΣX , is known as the singular locus of X.

While ΣX = Xn−1, the notation ΣX provides a convenient way to refer to the singular
locus without explicitly mentioning the formal dimension of X.

Example Let X be an n-dimensional simplicial complex filtered by the i-dimensional
skeleton as above. Then, the interiors of the n-simplices are the regular strata, and the
interiors of all other faces are the singular strata.

Figure 6: Regular and singular strata
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The singular locus is the union of the singular strata ΣX = {X0 −X−1} ∪ {X1 −X0} ∪
{X2 −X1}.

Figure 7: Singular locus

Cones
Cones are a common tool when constructing certain types of filtered spaces, so we

introduce them here.

Open Cone [50]

If X is a compact Hausdorff space, then the open cone on X is defined as

c̊X = X × [0, 1)/X × {0}

The open cone c̊X on X is the result of identifying the subset X × {0} of X × [0, 1)
to a single point (called the vertex of the cone). Intuitively, one can imagine stretching
X along the real line and then adding a point at one end to create a cone-like structure.
We will let ∗ denote the vertex of the cone and adopt the convention that the cone on the
empty set is a point.

Figure 8: c̊X

One way of creating new filtered spaces from old ones is by taking cones. If X is a
compact filtered space of dimension n − 1, we may construct a filtration of dimension n
on the open cone c̊X as follows. We define the filtration on c̊X so that (̊cX)i = c̊ (Xi−1)
for all i with 0 ≤ i ≤ n. With this definition, c̊X has dimension n, and the strata of c̊X
are the cone point ∗ and the products of the strata of X with the open interval. Notice
that we always have (̊cX)0 = {∗}, with the possibility that (̊cX)i = ∅ for some i > 0
if Xi−1 = ∅. By definition, the skeleton (̊cX)−1 is empty. The suspension of a compact
filtered space can be filtered in a similar manner.
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Example Consider the filtration of the 2-simplex X = ∆2.

Figure 9: Filtration of 2-simplex

The corresponding filtration on c̊(∆2) is illustrated below.

Figure 10: Filtration of c̊(∆2)

Note that the filtration has dimension 3. Furthermore, we have (̊cX)0 = {∗} and (̊cX)−1

is empty.
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2.1.3 Stratified Spaces

We can now start defining stratified spaces. Recall that a stratified space is a topological
space that can be decomposed into manifold pieces that “fit together nicely.” The Frontier
Condition formalizes this idea.

The Frontier Condition [29]

A filtered space X satisfies the Frontier Condition if for any two strata S, T of X
such that

S ∩ T̄ ̸= ∅

then
S ⊆ T̄

where T̄ denotes the closure of T .

The Frontier Condition establishes that the set of strata exhibits a well-defined structure.
In particular, we obtain a partial order < defined by S ≺ T if S ⊆ T̄ .

Example Let X be an n-dimensional simplicial complex filtered by the i-dimensional
skeleton. Suppose S, T are strata of X. If S ∩ T̄ ̸= ∅ then S is a face of T . This implies
S ⊂ T̄ . In other words, each open simplex (i.e., the interior of a simplex) intersects only
the simplices of which it is a face (which implies it is contained in the closure of those
simplices). This means X satisfies the Frontier Condition. In this context, the partial
order < corresponds to the face relations among the simplices.
For example, consider the 2-simplex below, letting S be the 1-stratum and T be the

2-stratum.

Figure 11: Frontier condition

On the other hand, the following filtered space does not satisfy the Frontier Condition.

Figure 12: Frontier condition (Non-example)

Consider S ⊂ T where S is the y-axis in the plane, and T is the union of S with the
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open upper half-plane. Here, S intersects the closure of T − S within T , but S is not
contained in that closure.

Stratified Space [29]

A filtered space X is a stratified space if it satisfies the Frontier Condition.

The partial order induced by the Frontier Condition gives us a structured way of decom-
posing spaces into strata that fit together in a well-defined manner. More specifically, the
closure of any stratum T comprises T and all lower-dimensional strata that intersect T ,
ensuring that the stratified space is coherently built up from its lower-dimensional pieces.

Proposition [29]

If X is a stratified space, the relation S ≺ T defines a partial order. The closure
of any stratum T consists of the union of T and all strata of lower dimension that
intersect T , given by

T̄ =
⋃
S≺T

S.

Proof. Reflexivity: It suffices to show that S ≺ S for any stratum S in X. By definition,
S ≺ T means S ⊆ T̄ . Since the closure of a stratum S always contains S itself, it follows
that S ⊆ S̄. Therefore, S ≺ S.

Transitivity: Assume S1 ≺ S2 and S2 ≺ S3 for strata S1, S2, and S3 in X. This means
S1 ⊆ S̄2 and S2 ⊆ S̄3. It suffices to show that S1 ≺ S3, i.e., S1 ⊆ S̄3. Since S1 ⊆ S̄2
and S2 ⊆ S̄3, it follows that S̄2 ⊆ ¯̄S3 = S̄3 because taking closures is idempotent (i.e.,
¯̄S3 = S̄3). Therefore, S1 ⊆ S̄2 ⊆ S̄3, which implies S1 ≺ S3.

Antisymmetry: Suppose S ≺ T and T ≺ S, i.e S ⊆ T̄ and T ⊆ S̄. It suffices to show
S = T . Assume S ⊂ Xi = Xi − Xi−1 and T ⊂ Xj = Xj − Xj−1. Since Xi is closed in
X, it follows that S̄ ⊆ Xi, and similarly T̄ ⊆ Xj . Given T ⊆ S̄ ⊆ Xi, we have j ≤ i.
Similarly, since S ⊆ T̄ ⊆ Xj , we have i ≤ j. Therefore, i = j.

Since i = j, both S and T are contained within the same Xi = Xj . Moreover, since
S ⊆ T̄ and T ⊆ S̄, and both S and T are connected components of Xi, each must be
closed in Xi. This implies there exists a closed set C in X such that S = Xi ∩ C and
T = Xi ∩ C, which implies that S = T .

Finally, we verify that T̄ is precisely the union of T and all strata S such that S ≺ T .
By definition, we have that

⋃
S≺T S ⊆ T̄ . Now, suppose x ∈ T̄ . Since the strata partition

X, x must belong to some stratum S. By the Frontier Condition, if S ∩ T̄ ̸= ∅, then
S ⊆ T̄ , implying S ≺ T . Therefore, x ∈ S for some S ≺ T , meaning x ∈

⋃
S≺T S. This

shows T̄ ⊆
⋃

S≺T S.

Thus, we conclude that T̄ =
⋃

S≺T S.

Example Let X be an n-dimensional simplicial complex filtered by its i-dimensional
skeleton. Recall that in this setting, the partial order induced by the filtration corresponds
to the face relations among simplices. Specifically, for two simplices S and T in X, we say
S < T if and only if S is an open face of the closed simplex T̄ . Furthermore, the closure
of an open simplex T is the disjoint union of T with all of its open faces. This hierarchical
structure ensures that each simplex “fits together nicely” with its faces.

14



Figure 13: The closure of an open simplex T is the disjoint union of T with all of its open
faces.

A particularly nice class of stratified spaces is one in which every stratum is a manifold.

Manifold Stratified Space [29]

A manifold stratified space is a stratified space in which every i-dimensional
stratum is an i-dimensional manifold.

Example A finite-dimensional simplicial complex is a manifold stratified space. In
this setting, the strata are the open faces of its simplices, and each of these faces is
homeomorphic to some Euclidean space.

Figure 14: Manifold stratified space

Example Suppose X is a manifold stratified space. Then, the open cone c̊X is also
a manifold stratified space. We define the filtration on c̊X such that (̊cX)0 = {∗} is the
cone point, and for i > 0 we have

(̊cX)i = (0, 1)×Xi−1

This means the strata of c̊X are the cone point and the products of the strata of X with
the interval (0, 1), which are themselves manifolds since X is manifold stratified and we
take products. Furthermore, the Frontier Condition holds on c̊X because it holds for X.
Additionally, the cone point is in the closure of every non-empty stratum.

2.1.4 Topologically Stratified Spaces

Manifold stratified spaces can be decomposed into a partially ordered set of strata, where
each stratum is a manifold. However, this framework is often still too broad to yield
useful results. Manifold theory usually applies conditions like local flatness to prevent
problematic cases. Likewise, we can define a local topological structure at each point
for stratified spaces to achieve a more manageable and well-behaved space. A tubular
neighborhood around a singular stratum is usually too much to expect because singular
strata often have irregular structures that prevent them from being approximated by such
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neighborhoods. However, by imposing some additional conditions, we can achieve locally
uniform “normal behavior” along singular strata.
This need for uniformity along singular strata leads to the local normal triviality con-

dition. This condition states that any point x in a singular stratum Xj − Xj−1 should
have a neighborhood Nx that looks like Nx

∼= Rj× c̊L, where L is a compact filtered space
called the ”link.” The homeomorphism maps Rj × {v} (with v being the cone point) to a
neighborhood of x in Xj −Xj−1. This means that for each point x in a singular stratum
Xj −Xj−1, we have a bundle over some neighborhood of x, with the fiber being a cone on
a lower-dimensional stratified space.
In fact, the link L can be considered as the intersection of a “normal slice” at x with a

sphere. One can show that the homeomorphism type of this normal slice is independent
of both the choice of a sufficiently small neighborhood of x and the choice of x within a
particular connected component of Xj −Xj−1 [3]. Consequently, these manifold pieces fit
uniformly into the larger space.
Historically, Whitney was the first to highlight that a good stratification should meet

specific regularity conditions along strata [74] [75]. These are famously known as “Whitney
conditions (a) and (b).” Topologically stratified spaces offer a purely topological framework
for studying singularities, similar to Whitney’s more differential-geometric theory. These
spaces were introduced by Thom, who demonstrated that every Whitney stratified space
is also a topologically stratified space with the same strata [68].

Topologically Stratified Space

We define a topologically stratified space by induction on dimension as follows:

(i) A 0-dimensional topologically stratified space is a countable set with
the discrete topology.

(ii) For m > 0, an m-dimensional topologically stratified space is a filtered
space X

X = Xm ⊇ Xm−1 ⊇ · · · ⊇ X1 ⊇ X0

so that the following local normal triviality condition is satisfied:

Local Normal Triviality

If x ∈ Xj −Xj−1 there exists

1. a neighbourhood Nx of x in X,

2. a compact (m − j − 1)-dimensional topologically stratified space L with fil-
tration

L = Lm−j−1 ⊇ · · · ⊇ L1 ⊇ L0

and

3. a homeomorphism
ϕ : Nx → Rj × c̊L

where c̊L is the open cone on L,

such that ϕ takes Nx ∩Xj+i+1 homeomorphically onto

Rj × c̊ (Li)
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for m− j − 1 ≥ i ≥ 0, and ϕ takes Nx ∩Xj homeomorphically onto

Rj × { vertex of c̊L}

This guarantees that the subset Xj − Xj−1 is a topological manifold of dimension j,
which we denote as Sj and call the jth stratum of X. The connected components of the
strata are called pieces, and X is locally normal trivial along these pieces. The union of
lower strata Xd−1 is ΣX , the singular locus of X.
L is called the link of the stratum containing x. Up to stratified diffeomorphism, the

link L depends only on the connected component of the stratum Xj − Xj−1 (the piece)
containing x. Hence, the condition on the neighborhoods ensures that each point within
a piece has the same local structure.

Example [4] Consider the pinched torus with a disc stretched across the center. We’ll
call the boundary of this disc C. If we remove C, we obtain a disconnected 2-manifold,
with the two pieces forming the stratum X2 −X1. Note that C itself is a one-manifold.

Figure 15: Stratification of pinched torus

However, not all points on C are singularities of the same kind. Let x be the pinch
point, and let y ∈ C where y ̸= x.

Figure 16: Pinched torus

Then y has a neighborhood that is the product of an interval in C and a cone on
three points: one from the disc and two from the torus (this resembles three sheets glued
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together along a line). However, x has no such neighborhood. Instead, its neighborhood
consists of a cone on “two circles joined by a line”.

Figure 17: The neighborhood of x is the product of the point R0 and a cone on “two
circles joined by a line.” In contrast, the neighborhood of y is the product of
the interval R1 and a cone on three points.

Thus, the “local normal triviality” condition requires we place x in a separate stratum.

Other notions of stratified spaces have evolved with various approaches to intersection
homology. The following kinds of spaces were the ones originally considered by Goresky
and MacPherson in [31].

Topological Pseudomanifold

A topological pseudomanifold of dimensionm is a para-compact Hausdorff topo-
logical space X which possesses a topological stratification such that

Xm−1 = Xm−2

and X −Xm−2 is dense in X

Overall, the definition tells us the following. An m-dimensional topological pseudoman-
ifold X is mostly the m-manifold X −Xm−2, which is dense in X. The rest of X is made
up of manifolds of various dimensions, and these must fit together nicely, in the sense
that each point in each stratum should have a neighborhood that is a trivial fiber bundle,
whose fibers are cones on lower-dimensional stratified spaces.
Examples of such spaces are copious. Any complex analytic or algebraic variety can

be given such a structure, as can certain quotient spaces of manifolds by group actions.
Other simple examples arise by taking open cones on manifolds, suspending manifolds
(or by repeated suspensions), gluing manifolds and pseudomanifolds together in allowable
ways, etc. [28].

2.2 Intersection Homology

Having introduced stratified spaces, we now turn to discuss intersection homology, which is
defined by modifying the definition of homology groups to place “allowability” conditions
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on the dimensions in which chains can meet singularities. These geometric conditions are
controlled by a perversity parameter p̄, which assigns an integer to each i-skeleton (or
stratum) of the space.

2.2.1 Homology with Z/2Z Coefficients

Homology provides an algebraic framework for understanding and quantifying the “holes”
in a given shape. We briefly recall some background here following [20] and refer the
reader to [35] or [22] for a more extensive treatment of the subject.
LetK be a simplicial complex. An i-chain is a subset of i-simplices inK. These i-chains

can be added together, where the sum of two i-chains is defined as the symmetric difference
of their respective sets. Thus, any i-simplex that is an element in both chains cancels out
in modulo-2 arithmetic. The boundary of an i-simplex is the set of its (i−1)-dimensional
faces, forming an (i− 1)-chain.

The set of all i-chains, together with the sum operation, forms a group denoted by
Ci(K). Furthermore, there exists a boundary operator ∂i : Ci(K) → Ci−1(K) that maps
an i-chain to the sum of the boundaries of its simplices.

An i-cycle is an i-chain with an empty boundary, and an i-boundary is an i-cycle that
is itself the boundary of some (i + 1)-chain. These i-cycles and i-boundaries form their
own groups, denoted Zi(K) and Bi(K), respectively. Since every i-boundary is also an
i-cycle, and every i-cycle is an i-chain, these groups are nested: Bi(K) ⊆ Zi(K) ⊆ Ci(K).

Now, two i-cycles are homologous if their sum is an i-boundary. Equivalently, two
i-cycles are homologous if one can be transformed into the other by adding an i-boundary.
Homology defines an equivalence relation, and the equivalence classes under this relation
form the i-th homology group, denoted Hi(K) = Zi(K)/Bi(K).

All of these groups—Ci(K), Zi(K), Bi(K), and Hi(K)—are vector spaces, so their
ranks correspond to their dimensions. The rank of the i-th homology group is particularly
important and is known as the i-th Betti number of K, given by

rankHi(K) = rankZi(K)− rankBi(K).

Consider a subcomplex L of K. The concept of relative homology describes the con-
nectivity of the pair (K,L), which can be thought of geometrically as treating L as a single
point within K. The relative chain group Ci(K,L) is the quotient Ci(K)/Ci(L). Rel-
ative cycles and boundaries are defined similarly to their absolute counterparts, with the
key distinction that a relative cycle’s boundary must lie within L. The relative homology
groups of the pair (K,L) are denoted by Zi(K,L). Importantly, for the types of spaces
we consider, the relative homology of the pair (K,L) is isomorphic to the homology of the
quotient space K/L. It is well known that the homology groups of K, L, and (K,L) are
related by a long exact sequence:

. . .→ Hi(L)→ Hi(K)→ Hi(K,L)→ Hp−1(L)→ . . .

Assuming only finitely many groups have non-zero ranks, a fundamental property of long
exact sequences is that the alternating sum of the dimensions of the vector spaces in the
sequence vanishes.
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Vanishing Alternating Sum [20]

Let L ⊆ K be simplicial complexes. Then∑
i∈Z

(−1)i [rankHi(L)− rankHi(K) + rankHi(K,L)] = 0.

Proof Sketch. By the definition of exactness, each homology group’s rank can be ex-
pressed as the sum of two non-negative integers, one shared with the preceding group and
the other with the succeeding group in the sequence. Since only finitely many groups have
non-zero ranks, the alternating sum of these ranks must vanish.

2.2.2 Motivation

Before discussing intersection homology, we begin with some motivation and general re-
marks. One of the most significant results in the topology of manifolds is Poincaré Duality
[60] [61]. To state the Poincaré duality isomorphism, we follow [50] and recall the cap
product on an n-manifold M . The cap product is a map

Ci(M)× Cn(M)
⌢−→ Cn−i(M),

where Ci(M) and Ci(M) are the i-chains and i-cochains on M . For a ∈ Cn−i(M),
b ∈ Ci(M), and σ ∈ Cn(M), the cap product satisfies:

a(b ⌢ σ) = (a ⌣ b)(σ).

This operation is compatible with boundary maps, allowing it to extend to cohomology
and homology:

H i(M ;Z)×Hn(M ;Z) ⌢−→ Hn−i(M ;Z).

For a closed, oriented, connected topological n-manifoldM , it’s known thatHn(M ;Z) = Z,
where the generator of this group referred to as the fundamental class of M , denoted by
[M ]. This leads us to Poincaré Duality:

Poincaré Duality

Let M be a closed, connected, oriented topological n-manifold with fundamental
class [M ]. Then capping with [M ] induces an isomorphism:

H i(M ;Z)
∼=−→ Hn−i(M ;Z),

for all integers i.

For a modern proof, see [35]. A consequence of Poincaré Duality is the existence of a
non-degenerate pairing:

Hi(M,C)⊗Hn−i(M ;C) −→ C.

This pairing implies that the Betti numbers of M in complementary degrees are equal:

dimCHi(M ;C) = dimCHn−i(M ;C).

However, Poincaré duality generally fails for spaces that are not manifolds. Even a single
point that is not locally Euclidean can cause this failure. For example, in the one-point
union of two n-dimensional spheres Sn ∨ Sn, where n > 0, we have H0(S

n ∨ Sn) ∼= Z but
Hn(Sn ∨ Sn) ∼= Z⊕ Z.
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Figure 18: We have H0(S
2 ∨ S2) ∼= Z but H2(S2 ∨ S2) ∼= Z⊕ Z

A more involved example is the suspension of the 2-torus, ST 2, which has two isolated
singularities at the cone points a and b.

Figure 19: The suspension of the 2-torus cT 2

Each of a and b have a neighborhood homeomorphic to the cone on the torus, cT 2,
however the cone point of cT 2 does not have a neighborhood homeomorphic to R3. This
can be demonstrated as follows [29]. Let v be the cone point of cT 2. Since cones are
contractible, the long exact sequence of the pair and the homotopy invariance of homology
gives us

H2(cT
2, cT 2 − {v}) ∼= H1(cT

2 − {v}) ∼= H1(T
2) ∼= Z⊕ Z

However, if v had a neighborhood homeomorphic to R3, then by excision we would have

H2(cT
2, cT 2 − {v}) ∼= H2(R3,R3 − {v}) ∼= H1(R3 − {v}) ∼= H1(S

2) ∼= Z

Therefore, cT 2 is not a manifold. Routine computations show that the homology groups
are:

H3(cT
2) = Z,

H2(cT
2) = Z⊕ Z,

H1(cT
2) = 0,

H0(cT
2) = Z,
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and the cohomology groups are:

H3(cT 2) = Z,
H2(cT 2) = Z⊕ Z,
H1(cT 2) = 0,

H0(cT 2) = Z.

Thus, for example, H2(cT
2) ̸∼= H1(cT 2), indicating that Poincaré duality fails.

The failure of Poincaré duality in spaces with singularities arises from issues with
transversality. Transversality describes how two objects intersect and can be thought
of as the “opposite” of tangency.

Transversality

Two submanifolds M and N of a manifold Y are transverse if, at every point
x ∈M ∩N ,

span {TxM,TxN} = TxY

Figure 20: Transversality

In smooth manifold theory, submanifolds can be adjusted via small isotopies to achieve
transversality. Similar techniques exist for moving polyhedra in general position, and
chains can be pushed into general position with respect to submanifolds or other chains
without changing their homology class.
For an n-dimensional PL stratified pseudomanifold X, when computing the homology

H∗(X) from the chain complex C•(X), we typically use arbitrary PL chains. A PL i-chain
ξ is transverse to the stratification of X if

dim(|ξ| ∩Xn−k) = i+ (n− k)− n = i− k,

for all k ≥ 2. According to a theorem by McCrory [51], if we define a chain complex to
include only transverse PL chains and compute its i-th homology, we obtain the cohomol-
ogy Hn−i(X) of X. Thus, if every chain could be made transverse to the stratification,
Poincaré duality would hold. The failure then of Poincaré duality in stratified spaces is
related to the difficulty of making chains transverse to the stratification [73]. A homology
theory for such spaces must address this issue.
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2.2.3 Historical Remarks

In the late 1970s and early 1980s, Mark Goresky and Robert MacPherson first defined (in
[31] for PL pseudomanifolds and in [32] for topological pseudomanifolds) a collection of
groups IH p̄

∗ (X), called intersection homology groups. Their goal was to extend some of
the most significant tools of manifold theory, such as Poincaré duality and signatures, to
spaces with singularities. Goresky and MacPherson introduced a multi-index “perversity”
parameter to specify allowable “deviation” from full transversality and to associate a group
to each value of the parameter, resulting in a spectrum of groups that interpolate between
cohomology and homology [3].

Remarkably, the groups in complementary dimensions with opposite perversities exhibit
a type of Poincaré duality that holds for all pseudomanifolds. Goresky and MacPherson
demonstrated that if X is a compact n-dimensional stratified pseudomanifold and p̄ and
q̄ are complementary perversities such that p̄(k) + q̄(k) = k − 2, then there exists an
intersection pairing I p̄Hi(X) ⊗ I q̄Hn−i(X) → Z which is nondegenerate when all groups
are tensored with the rationals Q. Although intersection homology was initially intro-
duced using piecewise-linear (PL) chain complexes, Goresky and MacPherson extended
the definition of these groups using sheaf theory [32]. This reformulation proved to be
highly successful, particularly in its applications to algebraic geometry and representation
theory.
King later introduced a singular version of intersection homology and used it to provide

another proof of invariance [40]; this version was eventually shown to be isomorphic to
the sheaf formulation. The result of topological invariance was further extended to the
broader category of locally conelike topological spaces [34]. For a more detailed exposition
on the development of intersection homology, see the survey by Kleiman [42].

2.2.4 Perversity

Intersection homology groups are defined by considering the simplices and chains that
we ordinarily use to define homology groups, but placing some limitations on how these
chains are allowed to interact with simplices in X. In practice, this is done by restricting
the dimensions of the intersections of chains with skeleta or strata [29]. There can be
many different ways to impose these constraints: we could completely forbid a chain from
intersecting an i-skeleton, impose no limitations at all, or something in between. These
choices are encoded in a parameter called the “perversity”. Because there are numerous
options for these parameters, many different kinds of intersection homology groups exist.

The most general definition of perversity we will use is as follows.

General Perversities [48]

Let X be a filtered space. A general perversity on X is a function mapping the
skeleta of X to the integers

p̄ : {Xn, Xn−1, . . . , X0} → Z

In other words, a perversity is a sequence of integers

p̄ = (p0, p1, . . . pn)

For defining intersection homology, a perversity function takes the codimension of a skele-
ton as its input. The idea is that the index k is the codimension of the skeleton Xn−k in
an n-dimensional filtered space. The output determines how much chains in our homology
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computations can interact with these skeleta. If p̄ and q̄ are perversities on X and p̄k ≤ q̄k
for all k, then we write p̄ ≤ q̄.
When Goresky and MacPherson first introduced intersection homology, they required

some specific conditions for the perversity parameters. These rules were necessary for
two main reasons: to ensure the intersection homology groups met a generalized version
of Poincare duality and to guarantee these groups were topological invariants. In other
words, the groups needed to be independent of the choice of stratification of X. The
original definition, which we refer to as “GM Perversity,” is as follows.

Goresky-MacPherson Perversities

A GM perversity p̄ is a function

p̄ : N→ N
i 7→ p̄i

satisfying the following properties

1. p̄0 = p̄1 = p̄2 = 0

2. p̄k ≤ p̄k+1 ≤ p̄k + 1

These conditions define a perversity as a step function. It starts at 0, and with each
increase of one in the input, the output either remains the same or increases by one.

Figure 21: The perversity p̄ = (0, 0, 0, 1, 1, 2, 3, 3, 3, 4)

Since GM perversities always evaluate to 0 on codimension-zero strata and we typically
assume there are no codimension-one strata when using GM perversities, it is standard to
represent GM perversities as functions with domain {2, 3, 4, . . . }. One convenient way to
describe GM perversities is to think of them as sequences

(p̄2, p̄3, p̄4, . . .)

Over time, it has become clear that the conditions imposed by Goresky and McPherson can
be relaxed [28]. To quote Friedman, “In relaxing these restrictions, one usually loses the
topological invariance of intersection homology. However, this should be seen not as a loss
but as an opportunity to study stratification data by using intersection homology theory
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to assess these stratifications and perhaps measure the difference between them. In this
context, we most certainly do not desire stratification independence” [28]. Nonetheless,
duality results usually persist, provided the appropriate generalizations of intersection
homology are chosen.

Example Several GM perversities play a significant role in intersection homology, as
intersection homology groups dualize not only with respect to dimension but also with
respect to perversities.

The minimal zero perversity 0̄ is the function

0k = (0, 0, 0, 0, . . . )

The maximal top perversity t̄ is the function t̄ is

t̄k = (k − 2) = (0, 1, 2, 3, . . . )

The lower middle perversity

m̄k =

⌊
k − 2

2

⌋
= (0, 0, 1, 1, 2, 2, . . .)

and the upper middle perversity

n̄k =

⌊
k − 1

2

⌋
= (0, 1, 1, 2, 2, 3, . . .)

Figure 22: The zero perversity 0̄, top perversity t̄, lower middle perversity m̄k, and upper
middle perversity n̄k
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We call two perversities p̄ and q̄ complementary or dual if p̄ + q̄ = t̄. For example,
if d = 2, then (−1, 0) and (0, 0) are dual perversities. Observe that the lower middle and
upper middle perversities m̄+ n̄ = t̄ are dual.

We will use perversities to determine the permissible level of intersection between sim-
plices and lower-dimensional skeleta.

2.2.5 Allowable Simplices

We begin with a simplicial version of intersection homology. A simplicial filtered space is a
filtered space with a fixed triangulation, where each skeleton in the filtration is a simplicial
subcomplex.

Allowable Simplices

Let X be a simplicial filtered space with general perversity p̄. An i-simplex σ of X
is p̄-allowable (or p̄-proper) if its closure σ̄ satisfies

dim(σ̄ ∩Xn−k) ≤ i− k + p̄k

for each codimension-k skeleton Xn−k

Since we are working in a simplicial setting, this intersection will be a union of faces of
σ, and dim(σ̄ ∩Xn−k) will be the highest dimension of such a face. If σ ∩Xn−k = ∅, we
adopt the convention that dim(∅) = −∞.
The intuition behind this inequality is as follows. Consider a m-manifold Mm with

submanifolds Nn and P p. We say that N and P are in general position if

dim(N ∩ P ) ≤ n+ p−m

In particular, this condition is satisfied when N and P intersect transversely. Given that
the codimension of P in M is m− p, we can rewrite this as

dim(N ∩ P ) ≤ n− codim(P )

Applying this to the simplicial setting, if an i-dimensional simplex σ intersects a codimension-
k skeleton Xn−k transversely, the dimension of the intersection will satisfy

dim(σ ∩Xn−k) ≤ i− codim(Xn−k) = i− k

Non-transverse intersections would result in a higher dimension. Thus, when p̄k = 0, we
require that σ intersects Xn−k transversely for it to be allowable. Allowing p̄k > 0 relaxes
this requirement by a degree controlled by p̄. On the other hand, setting p̄k < 0, which is
less common, strengthens the requirement for general position.
Since p̄ is a function defined on the skeleta, the perversity provides a way to control, on

a skeleton-by-skeleton basis, how much deviation from general position is acceptable when
defining intersection chains. This is the origin of the term “perversity” — in a sense, it is
perverse not to always require general position!

Example Consider the filtered simplicial space X and the 1-simplex σ, which is made
up of two manifolds joined at a singular point.
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Figure 23: The filtered simplicial space X and the 1-simplex σ

Consider the intersection of σ with the singular point in X0. We have

dim(σ ∩X0) = 0

If the 1-dimensional simplex σ were to intersect the codimension-2 skeletonX0 transversely,
we would have

dim(σ ∩X0) ≤ −1

This implies that no simplex can intersect the point transversely. Thus, for p2 = 0, we
have that no simplex containing the singular point in X0 is proper. This reflects the fact
that X is made up of two pieces. However, we can set p2 = 1 to relax this condition.
Then, every simplex that intersects the 0-dimensional point is proper, and the singular
point now leads to a proper connected component.

2.2.6 Allowable Chains

Now that we have defined allowable simplices, we can extend this definition to allowable
chains. Recall that every element ξ in Ci(X), known as an i-chain of X, can be uniquely
expressed as a linear combination:

ξ =
∑
σ

ξσ · σ,

where σ ranges over the i-simplices of X, and the coefficients ξσ are chosen from our
coefficient field F = Z/2Z.

We refer to σ as a “simplex of ξ” if ξσ ̸= 0. Each i-simplex σ in X serves as a basis
vector in Ci(X). This basis vector corresponds to the chain ξ where all coefficients are
zero except for ξσ, which is equal to the multiplicative identity 1 ∈ F.

Allowable Chains

Let X be a simplicial filtered space with general perversity p̄. A chain ξ ∈ C•(X) is
p̄-allowable (or p̄-proper) if all of the simplices of ξ and all of the simplices of ∂ξ
(with non-zero coefficient) are p̄-allowable.
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The Z/2Z-vector space with basis the allowable i-chains for perversity p̄ is denoted

IC p̄
i (X)

The complex of intersection chains is a subcomplex of the simplicial chains C•(X). Let
us take a moment to discuss the boundary condition in the above definition. To define
homology, we need a sequence of groups and boundary maps ∂i between them that satisfy
∂i ◦ ∂i+1 = 0. In the simplicial setting, the group Ci(K) is typically defined as a vector
space with the i-simplices of K as its basis. The boundary map then maps a sum of
i-simplices to a sum of (i − 1)-simplices, ensuring ∂i is a well-defined homomorphism
∂i : Ci(K)→ Ci−1(K).
In the context of intersection homology with a given perversity p̄, it might seem natural

to define a “proper” i-chain as a sum of proper i-simplices. However, this approach doesn’t
work because the boundary map would not be well-defined: there’s no guarantee that the
boundary of a proper i-simplex will be a sum of proper (i − 1)-simplices. To see why,
consider the following example [4].

Example Suppose that X0 is a singular point of codimension two and that p̄ = (0, 0, 0).
We have

dim(A ∩X0) = 0 ≤ 2− codim(X0) + p̄0 = 0

Thus, the triangle A is itself an allowable 2-simplex with respect to X0. On the other
hand, ∂A is not a sum of allowable 1-simplices: for example, the edge δ is not an allowable
1-simplex since

dim(δ ∩X0) = 0 ̸≤ 1− codim(X0) + p̄0 = −1

Figure 24: A cannot be part of the 2-dimensional chain group. On the other hand, the
sum of all the 2-simplices could be [4]

Thus, to have well-defined boundary maps when defining allowable chains, we require
all of the simplices of ξ and all of the simplices of ∂ξ to be p̄-allowable.
Now suppose ξ is an allowable i-chain. Note that ∂(∂ξ) = 0. Specifically, ∂(∂ξ) can

be written as a sum of proper (i − 2)-simplices, meaning that ∂ξ itself is an allowable
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(i − 1)-chain. Consequently, the boundary maps ∂i provide a sequence of well-defined
homomorphism

∂i : IC
p̄
i (X)→ IC p̄

i−1(X)

with ∂i ◦ ∂i+1 = 0, forming a chain complex.

2.2.7 Intersection Homology

The intersection homology groups are defined for the intersection chain complex above.

Intersection Homology Groups [3]

The homology groups of the intersection chain complex,

IH p̄
i (X) = Hi

(
IC p̄

• (X)
)

are called the perversity p̄ intersection homology groups of the stratified space
X.

So, we define IH p̄
i (X), the i-th intersection homology group with perversity p̄ of X,

as the kernel of the map ∂i : IC
p̄
i (X) → IC p̄

i−1(X) modulo the image of the map ∂i+1 :

IC p̄
i+1(X)→ IC p̄

i (X).
Thus, the i-th intersection homology group is a Z/2Z-vector space with a basis consisting

of those allowable i-cycles that are not the boundary of an allowable (i+ 1)-chain.
We remark that the definition of intersection homology groups does not use the locally

cone-like structure of topologically stratified spaces. In fact, intersection homology groups
can be defined for any filtered space. The pseudomanifold structure is typically used to
demonstrate that intersection homology groups are topological invariants.
In [31], Goresky and MacPherson impose the condition that their stratified spaces have

no strata of codimension 1. This requirement was not problematic since their primary ap-
plication was to complex algebraic varieties. However, we aim to apply this theory to more
general types of stratified spaces and, therefore, do not wish to impose any assumptions
on the stratum codimension.
Dropping this assumption has two consequences. Firstly, Poincaré Duality no longer

holds, but this can be resolved by using the relative chain groups C∗(X,ΣX), where ΣX

is the singular set of X. As proven in [4], this restores Poincaré Duality. Secondly,
intersection homology groups become dependent on the choice of stratification. However,
we see this as a useful feature. Persistent intersection homology, being an invariant of a
space equipped with both a filtration and a stratification, will change if either is altered.
This makes it a valuable tool for identifying where changes in stratification cause significant
structural changes in our data.

Example [50] Consider X = Σ(S1 ⊔ S1), the suspension of a disjoint union of two
circles. We denote these circles by A and B, with points a ∈ A and b ∈ B.
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Figure 25: X = Σ(S1 ⊔ S1)

Let pa = cone(a) and pb = cone(b) be the paths joining a and b to the top suspension
point.

Figure 26: Paths joining a and b to the top suspension point

Let Σ(a) and Σ(b) be the geodesic paths joining the two suspension points, which pass
through a and b.

Figure 27: Geodesic paths joining the two suspension points

Finally, let Σ(A) and Σ(B) be the two 2-spheres obtained by suspending the circles A
and B.
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Figure 28: The two 2-spheres obtained by suspending the circles A and B

The homology groups of X are

• H0(X) = Z = ⟨[a]⟩ = ⟨[b]⟩

• H1(X) = Z = ⟨[Σ(a)− Σ(b)]⟩

• H2(X) = Z⊕ Z = ⟨[Σ(A)], [Σ(B)]⟩

To calculate intersection homology with perversity 0̄ = (0, 0, 0), consider the allowable
0-chains with respect to the 0-skeleton:

IC 0̄
0 (X) =

{
ξ0 ∈ C0(X) : dim

(
ξ0 ∩X0

)
≤ 0− 2 + 0̄(2) = −2

}
Hence, no 0-chains (points) can intersect X0. Similarly, no 1-chains can intersect X0:

IC 0̄
1 (X) =

{
ξ1 ∈ C1(X) : dim

(
ξ1 ∩X0

)
≤ 1− 2 + 0̄(2) = −1

}
Next, consider the allowable 2-chains with respect to the 0-skeleton:

IC 0̄
2 (X) =

{
ξ2 ∈ C2(X) : dim

(
ξ2 ∩X0

)
≤ 2− 2 + 0̄(2) = 0

}
Hence, all 2-chains can intersect X0, but their boundaries (1-chains) cannot. Therefore,
the 0̄-intersection homology groups of X are as follows.

The 1-chain pa−pb (which passes throughX0) is not allowed. Thus, IH
0̄
0 (X) is generated

by points in different components.

• IH 0̄
0 (X;Z) = Z⊕ Z = ⟨[a], [b]⟩

The 1-chain Σ(a) − Σ(b) is not allowable because it passes through X0. Furthermore,
cone(A), cone(B) are allowable 2-chains whose boundaries A and B do not intersect X0.
Thus, A and B are boundaries.

• IH 0̄
1 (X;Z) = 0

The 2-chains Σ(A) and Σ(B) are allowable because they intersect X0 only at points. Thus,
these remain generators in intersection homology.

• IH 0̄
2 (X;Z) = Z⊕ Z = ⟨[Σ(A)], [Σ(B)]⟩
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2.2.8 Local Homology

Recall that the local homology groups of a space X at a point x ∈ X are defined as the
groups Hn(X,X −{x}). For any open neighborhood Ux of x, excision gives isomorphisms

Hn(X,X − {x}) ≈ Hn(Ux, Ux − {x})

assuming points are closed in X. This means the groups Hn(X,X −{x}) depend only on
the local topology ofX at x [35]. A homeomorphism f : X → Y must induce isomorphisms

Hn(X,X − {x}) ≈ Hn(Y, Y − {f(x)})

for all x and n. Therefore, local homology groups can be used to determine when spaces
are not locally homeomorphic at certain points.

If X is a m-manifold, or if x is a point in the top-dimensional stratum of an m-
dimensional stratified space, the local homology groups are rank one in dimension m
and trivial in all other dimensions. However, the local homology groups for points in
lower strata are more enlightening.
Thus, local homology is a valuable tool for studying stratified spaces. If x and y are

sufficiently close points in the same stratum, there is a natural isomorphism between their
local homology groups:

H(X,X − {x}) ∼= H(X,X − {y})

This idea has been used to define filtrations on point cloud data [6]. Although the
filtration of a stratified space is not unique, there is a natural coarsest filtration defined
by considering points x and y equivalent if there exist neighborhoods of x and y with a
homeomorphism between them that maps x to y. If two points have such neighborhoods,
their local homology groups are the same. The contrapositive of this statement is used to
find the best stratification of point cloud data. If two points do not have equivalent local
homology groups, then they must belong to different strata.

2.3 Invariance of Intersection Homology

Following [4], we briefly address the independence of intersection homology groups on
the choice of stratification and triangulation of a stratified space, as well as the types of
homotopy under which intersection homology is invariant. We then proceed to discuss the
effects of perversity.

2.3.1 Stratification

A natural question is whether the intersection homology groups of a stratified space X
depend on its stratification. In our more general context, the intersection homology groups
will indeed rely on the stratification. However, under certain assumptions on the space and
perversity, such as having no codimension-1 strata and pi ≤ pi+1 ≤ pi + 1, independence
can be guaranteed [31].

2.3.2 Triangulation

Intersection homology groups are not independent of the triangulation of a space.
Fortunately, this dependence is not very strong. We can achieve independence of tri-

angulation by assuming some minor conditions. Specifically, the intersection homology
groups stabilize with repeated barycentric subdivision [49].
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2.3.3 Flaglike Triangulations

A triangulation of a space X with stratification {Xk} is called flaglike if, for every simplex
σ and every k, the intersection σ̄∩Xk is a single face of σ̄. The first barycentric subdivision
of any triangulation is always flaglike [49].

Flaglike triangulations are ideal for computing intersection homology. If K is a flaglike
triangulation, any further subdivision will yield isomorphic intersection homology groups
[41].

2.3.4 Homotopy Type

Recall that a homotopy equivalence between topological spaces induces homology isomor-
phisms. This is not necessarily true for intersection homology; specifically, a problem
arises if an allowable chain is mapped to a non-allowable one.
Intersection homology is, however, preserved by a specific type of homotopy equivalence

[4]. A map f : X → Y between two stratified spaces X and Y is called stratum-
preserving if the image of each stratum of X under f is contained within the stratum of
Y of the same codimension. When stratifying the space X×I by setting (X×I)k = Xk×I,
a stratum-preserving map F : X × I → Y is referred to as a stratum-preserving
homotopy from X to Y .
A map f : X → Y is called a stratum-preserving homotopy equivalence if there

exists a map g : Y → X such that f ◦ g and g ◦ f are both homotopic to the identity via
stratum-preserving homotopies. Such a stratum-preserving homotopy equivalence induces
intersection homology isomorphisms in all dimensions [27].

2.3.5 Perversity

Recall that given two perversities p̄ and q̄, we say p̄ ≤ q̄ if p̄k ≤ q̄k for all k. This gives us
a natural inclusion:

IC p̄
• (X) ↪→ IC q̄

•(X)

The following is a more general partial order on perversities, which also induces an inclusion
of intersection chain complexes.

Partial Order on Perversities

For perversities p̄ and q̄, we say p̄ ⪯ q̄ if one of the following holds for each k:

1. p̄k ≤ q̄k

2. q̄k < p̄k and p̄k < i− k

3. q̄k < p̄k and for γ ∈ IC p̄
i (X) such that dim(γ ∩ Xn−k) is maximal, we have

q̄k ≥ dim(γ ∩Xn−k)− i+ k

for all i and k

Proof. Let σ ∈ IC p̄
i (X) be an arbitrary basis simplex.

Case 1 Suppose p̄k ≤ q̄k. Then

dim(σ ∩Xn−k) ≤ i− k + p̄k ≤ i− k + q̄k

implies σ is q̄k-allowable.
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Case 2
Suppose q̄k < p̄k and p̄k < i− k. Then no i-simplex σ is p̄k-allowable, since

dim(σ ∩Xn−k) ≤ i− k + p̄k

< i− k − (i− k)
< 0

Case 3
Suppose q̄k > p̄k Let γ ∈ IC p̄

i (X) be a p̄k-allowable simplex such that dim(γ ∩Xn−k) is
maximal. This means

dim(σ ∩Xn−k) ≤ dim(γ ∩Xn−k)

By assumption, we have dim(γ ∩Xn−k)− i+ k ≤ q̄k. Then

dim(σ ∩Xn−k) ≤ dim(γ ∩Xn−k) ≤ i− k + q̄k

implies that σ is also q̄k-allowable.

Conclusion
Therefore, we have the desired inclusion:

IC p̄
• (X) ↪→ IC q̄

•(X)

Induced Morphism on Intersection Homology

The inclusion of intersection chain complexes induces a canonical morphism on the
level of intersection homology:

IH p̄
∗ (X) −→ IH q̄

∗(X)

We can use chain maps to construct linear maps of intersection homology groups.

Proof. Let X be a simplicial filtered space, and suppose p̄ and q̄ are general perversities
on X such that p̄ ⪯ q̄. Let the i-simplex σ of X be p̄-allowable. This implies

dim(σ ∩Xn−k) ≤ i− k + p̄k

for each codimension-k skeleton Xn−k.
Since p̄ ⪯ q̄, we have an inclusion of chain complexes

IC p̄
• (X) ↪→ IC q̄

•(X)

The inclusion i : IC p̄
• (X) ↪→ IC q̄

•(X) is a chain map, meaning that it commutes with
the boundary operators:

i(∂c) = ∂(i(c)) for all c ∈ IC p̄
• (X).

Since i is a chain map, it induces a map on the homology groups. Specifically, if
[c] ∈ IH p̄

∗ (X) is a homology class represented by a cycle c ∈ IC p̄
• (X) (i.e., ∂c = 0), then

i(c) is a cycle in IC q̄
•(X) and represents a homology class in IH q̄

∗(X).
The map on homology induced by the inclusion i is the canonical morphism:

Φ : IH p̄
∗ (X) −→ IH q̄

∗(X)

34



For a homology class [c] ∈ IH p̄
∗ (X), we have:

Φ([c]) = [i(c)]

Thus, given p̄ ⪯ q̄, there is a natural inclusion of intersection chain complexes IC p̄
• (X) ↪→

IC q̄
•(X) which induces a canonical morphism on the level of intersection homology:

IH p̄
∗ (X) −→ IH q̄

∗(X).

2.4 Persistent Intersection Homology

Persistent homology measures the scale or resolution of a topological feature using a geo-
metric function on a topological space and an algebraic process that converts this function
into measurements. First, a data set X is assigned a filtration of topological or combina-
torial objects. From this filtered object, a persistence module is computed by calculating
homology at each filtration level while keeping track of the functoriality of homology on the
inclusions. This method is particularly useful for parameterized families of spaces, such as
Vietoris-Rips complexes, that model point-cloud data sets, where features persisting over
a larger parameter range are statistically significant [30].
The concept of persistence emerged independently around the turn of the century

through the work of Frosini, Ferri, and collaborators in Bologna, Italy; the doctoral
research of Robins in Boulder, Colorado; and a project led by Edelsbrunner at Duke
University, North Carolina [23].

2.4.1 Persistent Homology

We now give a brief overview of persistent homology. For a more complete treatment of
the subject, the reader is referred to [56] or [57]. We begin by recalling the definition of a
filtration:

Filtration [56]

Let K be a simplicial complex; a filtration of K (of length n ) is a nested sequence
of subcomplexes of the form

F1K ⊂ F2K ⊂ · · · ⊂ Fn−1K ⊂ FnK = K

where i denotes the filtration step.

How we construct such a filtration depends on the underlying space. A commonly used
filtration for analyzing such point clouds of data is the following. Consider a metric space
M consisting of a finite collection of points in Euclidean space Rn. For such point clouds,
we can define a thickening process for any scale ϵ > 0. Specifically, we define M+ϵ as the
union of ϵ-balls centered at each point in M within Rn.

Vietoris-Rips Filtration [56]

Let (M,d) be a finite metric space. The Vietoris-Rips filtration of M is an
increasing sequence of simplicial complexes VRϵ(M), indexed by the real numbers
ϵ ≥ 0. A subset {x0, x1, . . . , xk} ⊂M forms a k-dimensional simplex in VRϵ(M) if
and only if the pairwise distances satisfy d(xi, xj) ≤ ϵ for all i, j.
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In essence, the Vietoris-Rips filtration constructs simplicial complexes at varying scales
by connecting points that are within a distance ϵ of each other. For the remainder of
this section, however, we drop the Fi to denote a step in the filtration and instead use a
filtration based on sublevel sets.
Given a monotonic function f : K → R with values r1 < r2 < . . . < rn, we define the

i-th sublevel set of f as Ki = f−1 ((−∞, ri]). This means that Ki consists of all points
in K where the value of f is less than or equal to ri. Consider a filtration of a simplicial
complex K:

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

Rather than the sequence of complexes, we are particularly interested in the topological
evolution indicated by the corresponding sequence of homology groups. For each i ≤ j,
there is an inclusion map from the underlying space of Ki to that of Kj , which induces a

homomorphism f i,jp : Hp(Ki)→ Hp(Kj) for each dimension p. This filtration results in a
sequence of homology groups connected by these homomorphisms:

0 = Hp(K0)→ Hp(K1)→ . . .→ Hp(Kn) = Hp(K),

with one such sequence for each dimension p [22]. This sequence is referred to as a
persistence module. It can be expressed as a direct sum of indecomposable modules, each
of which takes the form . . . → 0 → k → . . . → k → 0 → . . ., where k = Z/2Z. In these
indecomposable modules, the maps between the 1-dimensional vector spaces k are identity
maps, while all other maps are zero maps. Each indecomposable module corresponds to
a specific homological event: the birth and subsequent death of a homology class. As we
move from Ki−1 to Ki, new homology classes may emerge, while others might disappear
if they become trivial or merge with existing classes.

Persistent Homology Groups [22]

The p-th persistent homology groups are the images of the homomorphisms
induced by inclusion, H i,j

p = im f i,jp , for 0 ≤ i ≤ j ≤ n.

The persistent homology groups consist of the homology classes of Ki that persist until
Kj , formally defined as H i,j

p = Zp(Ki)/(Bp(Kj)∩Zp(Ki)). We have such a group for each
dimension p and each index pair i ≤ j.

Consider a class γ in Hp(Ki). We say γ is born at Ki if γ /∈ H i−1,i
p . Furthermore, if γ

is born at Ki, it dies when entering Kj if it merges with an older class as we move from

Kj−1 to Kj . Specifically, γ dies at Kj if f i,j−1
p (γ) /∈ H i−1,j−1

p but f i,jp (γ) ∈ H i−1,j
p . The

difference in function value between birth at Ki and death at Kj is called the persistence
of γ.
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Figure 29: The figure above is due to [22]. The class γ is born at Ki (since it does not lie
in the image of H• (Ki−1)) and dies entering Kj , where its image merges into
the image of H• (Ki−1).

We can conveniently represent the idea that γ is born at ai and dies as it enters aj
by plotting the point (ai, aj) on a two-dimensional plane. When we gather these points
for all p-dimensional classes, we create what’s called the dimension p persistence diagram,
denoted as Dgmp(f). Since birth always occurs before death, all the points will lie above
the diagonal in this diagram.
However, there’s a case where a class γ is born at ai but doesn’t die because it represents

a class in Xm = X. In such cases, we represent γ with the point (ai,∞) in the diagram.
We get a diagram for each dimension corresponding to the homology groups, and we use
Dgm(f) to refer to the entire infinite series of these diagrams.
An important property of persistence diagrams is their stability. Specifically, the bottle-

neck distance between the persistence diagrams of two functions f, g : K → R is bounded
above by the L∞-distance between the functions [17].

W∞
(
Dgmp(f),Dgmp(g)

)
≤ ∥f − g∥∞.

In a persistence diagram, the persistence of a point represents the vertical distance to the
diagonal, given by |f (rj)− f (ri)|. The 1-norm of the diagram, denoted ∥Dgm(f)∥1, is
the sum of the persistences of all its points. To manage points at infinity, we introduce a
cut-off value C, which effectively replaces ∞ for birth and death values that exceed this
threshold.
The concepts of birth and death in persistent homology are not exclusive to homology

groups. In fact, persistence can be applied to any sequence of vector spaces connected
by homomorphism. Persistence modules were introduced in 2005 by G. Carlsson and A.
Zomorodian as an algebraic framework to address persistent homology [76]. We can define
persistence modules as follows.

N-indexed Persistence Module [56]

An N-indexed persistence module over F is a sequence (V•, a•) of F-vector
spaces Vk and linear maps ak defined for k ≥ 0 which fit into a diagram

V0
a0−→ V1

a1−→ V2
a2−→ · · ·

ak−1−−−→ Vk
ak−→ Vk+1

ak+1−−−→ · · ·

Persistence modules can also be indexed by real numbers rather than natural numbers.

37



R+-indexed persistence module [56]

An R+-indexed persistence module over F is a pair (V•, a•) consisting of an
F-vector space Vt for each real number t ≥ 0 and a linear map as≤t : Vs → Vt for
each pair s ≤ t of non-negative real numbers satisfying

1. at≤t is the identity map on Vt for each t ≥ 0, and

2. as≤t ◦ ar≤s = ar≤t for every triple 0 ≤ r ≤ s ≤ t of real numbers.

One must impose some finiteness constraints to guarantee certain invariants for R+-
indexed persistence modules.

Tameness [56]

A persistence module (V•, a•) is called tame if

1. the vector spaces Vt are finite-dimensional for all t ≥ 0, and

2. there are only finitely many t ≥ 0 for which the map at−ϵ≤t+ϵ : Vt−ϵ → Vt+ϵ

fails to be an isomorphism for arbitrarily small ϵ > 0.

In particular, persistent homology provides invariants known as barcodes, which are
collections of intervals within a fixed totally ordered set, such as R or N. These intervals
correspond to topological features in the data, where each interval’s length corresponds to
the feature’s persistence (such as a connected component or a loop).
Let M be a persistence module indexed by a totally ordered set T . Then there exists a

unique multiset B(M) of intervals in T such that

M ∼=
⊕

I∈B(M)

kI .

The multiset B(M) is called the barcode of M [9].

2.4.2 Persistent Intersection Homology

Given a stratified space equipped with a filtration, we define intersection homology per-
sistence in direct analogy to the ordinary homology case. It has been shown that the
persistent homology diagrams Dgmr(f) and Dgmr(g) for two similar functions are also
similar [17], with the bottleneck distance between the diagrams bounded by the L∞ dis-
tance between the functions. The proof can be adapted to yield the same result for
persistent intersection homology diagrams [5].

IH Diagram Stability

Let f and g be two tame, real-valued functions on a stratified space X. Then, for
each dimension r and each perversity p̄:

dB
(
I p̄Dgmr(f), I

p̄Dgmr(g)
)
≤ ∥f − g∥∞.

2.5 Kernel, Image, and Cokernel Persistence

In recent years, the theory of persistence modules has grown significantly within pure
mathematics, leading to productive connections with function theory and symplectic ge-
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ometry [62]. In this section, we extend persistence modules to study stratified spaces. In
particular, we employ kernel, image, and cokernel persistence to investigate how the sin-
gularities of a space affect its homology. From another perspective, this can be interpreted
as studying chromatic complexes, where singularities are assigned a different color than
the rest of the space [21].

2.5.1 Analyzing Singularities

Suppose
X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X0

is a stratified space embedded in Rn and let ΣX = Xn−1 denote the singular locus of X
(that is, the set of all singular points). Suppose P ⊆ X is a finite point cloud sampled
from X, and let Σ+r

X be an r-neighbourhood of ΣX. Set

PM = P ∩ (X− Σ+r
X )

Suppose F •P is a filtration of P

F 0P ⊂ F 1P ⊂ · · · ⊂ F n−1P ⊂ F nP = P

and denote the inclusion simplicial maps by at : F tP ↪→ F t+1P . Let F •PM be the
filtration restricted to the simplices in PM, so F tPM = F tP − Σ+r

X , and denote the
inclusion simplicial maps by bi. Then we have an inclusion of filtrations

i : F •PM ↪→ F •P

Proof. It suffices to show the following diagram commutes.

F0PM FtPM Ft+1PM Fn−1PM FnPM PM

F0P FtP Ft+1P Fn−1P FnP P

···

i0

at

it

···

it+1

an−1

in−1

=

in

··· bt ···
bn−1

=

Well-definedness

By definition, F tPM = F tP − Σ+r
X , where Σ+r

X represents the set of simplices in F tP
that are not in PM. Since F tPM is constructed by removing certain simplices from F tP ,
it is clear that F tPM ⊆ F tP for each t, making the inclusion map it well-defined.

Preservation of Inclusion Property

It suffices to show
bt ◦ it = it+1 ◦ at

for all t ≥ 0. We have

bt ◦ it(FtPM) = bt ◦ it(FtP − Σ+r
X )

= bt
(
it(FtP )− it(Σ+r

X )
)

= bt(FtP )

= Ft+1P
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Similarly,

it+1 ◦ at(FtPM) = it+1(Ft+1PM)

= it+1(Ft+1P − Σ+r
X )

= it+1(Ft+1P )

= Ft+1P

Hence i : F •PM ↪→ F •P is indeed an inclusion of filtrations, as it is well-defined and
respects the inclusion property of the filtrations at each step t.

Recall the definition of a simplicial map.

Simplicial Map [56]

Let K and L be simplicial complexes. A simplicial map f : K → L is an assign-
ment K0 → L0 of vertices to vertices, sending simplices to simplices. So for each
simplex σ = {v0, . . . , vk} of K, the image f(σ) = {f (v0) , . . . , f (vk)} must be a
simplex of L.

Since PM ⊆ P is a subcomplex, the inclusion map i sends each simplex of PM to the
same simplex in P . Recall further the definition of a chain map.

Chain Map [56]

A chain map ϕ• from chain complexes (C•, d•) to (C
′
•, d

′
•) is defined to be a sequence

of F-linear maps {ϕk : Ck → C ′
k | k ≥ 0} which satisfy

d′k ◦ ϕk = ϕk−1 ◦ dk

for each k ≥ 0

We can use simplicial maps to produce chain maps:

Simplicial Maps induce Chain Maps [56]

For each dimension k ≥ 0, and k-simplex σ in K, we have an equality ∂Lk ◦Ckf(σ) =
Ck−1f ◦ ∂Kk (σ). Thus simplicial maps f : K → L induce chain maps

C•f :
(
C•(K), ∂K•

)
→

(
C•(L), ∂

L
•
)

The inclusion of filtrations i is a well-defined simplicial map and thus induces a chain
map

C•i : C•(FtPM, ∂PM
• ) ↪→ C•(FtP, ∂

P
• )

for each t ≥ 0, which implies the following diagram commutes for each k

· · · Ck(FtPM) Ck−1(FtPM) · · · C0(FtPM) 0

· · · Ck(FtP ) Ck−1(FtP ) · · · C0(FtP ) 0

∂
PM
k+1 ∂

PM
k

Cki

∂
PM
k−1

Ck−1i

∂
PM
1

0

C0i

∂P
k+1 ∂P

k
∂P
k−1 ∂P

1
0
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Recall that chain maps induced well-defined linear maps on homology.

Chain Maps induce maps on Homology [56]

Let ϕ• : (C•, d•) → (C ′
•, d

′
•) be a chain map. For each dimension k ≥ 0, there is a

well-defined F-linear map

Hkϕ := Hk (C•, d•)→ Hk

(
C ′
•, d

′
•
)

induced by ϕ•.

Thus, the chain map C•i induces a morphism of homology groups

ιt := HkC•i := Hk

(
C•(FtPM), ∂PM

k

)
→ Hk

(
C•(FtP ), ∂

P
k

)
for each k ≥ 0. Thus we have a map of quotient vector spaces ker ∂PM

k / img ∂PM
k+1 →

ker ∂Pk / img ∂Pk+1, such that ιt maps ker ∂PM
k to ker ∂Pk and img ∂PM

k+1 to img ∂Pk+1.
To simplify notation, we henceforth assume Z/2Z coefficients. Recall there are induced

linear maps on homology

αt := HkC•ai : Hk (F iPM)→ Hk (F i+1PM)

and
βt := HkC•bi : Hk (F iP )→ Hk (F i+1P )

in every dimension k ≥ 0 [56]). For a fixed k, these linear maps fit together into a sequence
of vector spaces:

Hk (F 0PM)
α0−→ Hk (F 1PM)

α1−→ · · · αn−2−−−→ Hk (F n−1PM)
αn−1−−−→ Hk (F nPM)

and

Hk (F 0P )
β0−→ Hk (F 1P )

β1−→ · · · βn−2−−−→ Hk (F n−1P )
βn−1−−−→ Hk (F nP )

Define the associated persistence modules:

S• := t 7→ H∗(F tPM)

A• := t 7→ H∗(F tP )

The morphisms on the level of homology

ιt : Hk (F tPM)→ Hk (F tP )

induce a morphism on the level of persistent modules

ι• : S• → A•

Proof. First, recall the definition of a morphism between persistence modules.

Morphism between Persistence Modules [56]

A morphism between persistence modules (V•, a•) and (W•, b•) is a family of linear
maps ϕk : Vk →Wk which satisfy

bi ◦ ϕi = ϕi+1 ◦ ai
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for every i ≥ 0

This definition amounts to requiring the commutativity of all squares in the following
diagram of vector spaces for each k ≥ 0:

Hk(F0PM) Hk(FtPM) Hk(Ft+1PM) Hk(FnPM) · · ·

Hk(F0P ) Hk(FtP ) Hk(Ft+1P ) Hk(FnP ) · · ·

···

ι0

αt

ιt

···

ιt+1

αn

ιn

···
βt ···

βn

It suffices to show

βt ◦ ιt = ιt+1 ◦ αt

for each t ≥ 0 and k ≥ 0. We have:

• ιt is the homomorphism induced by the inclusion it : F tPM ↪→ F tP .

• αt, the homomorphism induced by the inclusion at : F tPM ↪→ F t+1PM.

• βt, the homomorphism induced by the inclusion b : F tP ↪→ F t+1P .

Since we have a well-defined inclusion of filtrations, we have that the following simplicial
maps commute:

bt ◦ it = it+1 ◦ at
Furthermore, these simplicial maps induce well-defined chain maps. Since homology is
functorial

Composition of Chain Maps [56]

Given chain maps ϕ• : (C•, d•)→ (C ′
•, d

′
•) and ψ : (C ′

•, d
′
•)→ (C ′′

• , d
′′
•), we have

Hk(ψ ◦ ϕ) = Hkψ ◦Hkϕ

for each dimension k ≥ 0

We have

Hk(C•bt ◦ C•it) = Hk(C•it+1 ◦ C•at)

=⇒ Hk(C•bt) ◦Hk(C•it) = Hk(C•it+1) ◦Hk(C•at)

=⇒ βt ◦ ιt = ιt+1 ◦ αt

2.5.2 Kernel and Cokernel Persistence

We call the morphism of persistence modules ι• an isomorphism if every ιt is an invertible
linear map of vector spaces. We can measure the failure of ι• to be an isomorphism by its
kernel and cokernel. Specifically, we’re interested in the kernels, images, and cokernels of
ι•.
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Kernel

The kernel of ιt, denoted as ker ιt, consists of all elements γ in the vector space
H• (F tPM) that are mapped to the zero element in the vector space H• (F tP ).

ker ιt = {γ ∈ H• (F tPM) | ιt(γ) = 0 ∈ H• (F tP )}

In simpler terms, the kernel captures all the elements of homology that are “lost” when
mapped through the inclusion ιt because they end up being zero in the target space.

Image

The image of ιt, denoted as im ιt, is the set of all elements in the vector space
H• (F tP ) that are mapped from some element in H• (F tPM) through ιt.

im ιt = {ιt(γ) ∈ H• (F tP ) | γ ∈ H• (F tPM)}

The image represents the “output” of ιt, showing us which elements of homology in the
target space are actually hit by the inclusion.

Cokernel

The cokernel of ιt, denoted as cok ιt, is a measure of how much of the vector space
H• (F tP ) is not covered by the image of ιt. It is formally defined as the quotient
space:

cok ιt = H• (F tP ) / im ιt

In other words, the cokernel captures the “leftover” part of the target space that is not
hit by any element of the homology of the domain via the inclusion ιt. The following
diagram illustrates the construction we proved above:

Figure 30: The square above commutes because all four maps are induced by inclusions
[19]

From this, we see that the inclusion F tPM ⊆ F t+1P induces a homomorphism from
ker ιt to ker ιt+1. Similarly, the inclusion F tP ⊆ F t+1P induces a homomorphism from
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im ιt to im ιt+1, as well as another homomorphism from cok ιt to cok ιt+1. This leads to
sequences of kernels, images, and cokernels:

Ker(α→ β) : ker ι0 → ker ι1 → . . .→ ker ιn;

Im(α→ β) : im ι0 → im ι1 → . . .→ im ιn;

Cok(α→ β) : cok ι0 → cok ι1 → . . .→ cok ιn,

with each sequence connected from left to right by homomorphisms. Homology classes
are born and die within these sequences just as they do in sequences of homology groups.
Therefore, we can define persistent kernels, persistent images, and persistent cokernels,
and construct corresponding persistence diagrams, denoted as Dgm(ker ι•),Dgm(im ι•),
and Dgm(cok ι•).

2.5.3 Stability

An important property of persistence diagrams in ordinary persistent homology is their
stability.

Stability Theorem [17]

Let K be a simplicial complex. The bottleneck distance between the diagrams of
f, g : K → R is bounded from above by the L∞-distance between the two maps:

W∞ (Dgmk(f),Dgmk(g)) ≤ ∥f − g∥∞;

We discussed earlier that the stability of ordinary persistent homology can be extended
to persistent intersection homology. This implies that small changes in the input functions
f and g result in small changes in their corresponding persistence diagrams, as measured
by the bottleneck distance. The stability proof from [17] can be further adapted to the
context of kernel, image, and cokernel persistence by considering the maps

ιt : H• (F tPM)→ H• (F tP )

and
ι′′t+ε : H• (F t+εPM′′)→ H•

(
F t+εP

′′) ,
where ε is the maximum of the differences ∥f−f ′′∥∞ and ∥g−g′′∥∞. To adapt the stability
proof, it’s necessary to show that the inclusions F tPM ⊆ F t+εPM′′ and F tP ⊆ F t+εP

′′

map the kernel of ιt into the kernel of ι′′t+ε. This follows from the commutativity of the
homology diagram:

H• (F tP ) → H• (F t+εP
′′)

↑ ιt ↑ ι′′t+ε

H• (F tPM) → H• (F t+εPM′′)

A similar argument shows that the inclusions F tPM′′ ⊆ F t+εPM and F tP
′′ ⊆ F t+εP

map ker ι′′t into ker ιt+ε, ensuring the stability result holds. This reasoning also applies to
the images and cokernels, allowing the original stability proof to extend to this setting:

Stability Theorem for Kernel, Image, and Cokernel Persistence [19]

Let f, f ′′ : P → R and g, g′′ : PM → R be continuous tame functions, with the
conditions that f(x) ≤ g(x) and f ′′(x) ≤ g′′(x) for every x ∈ PM ⊆ P . Define ε as
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the maximum difference between the functions:

ε = max
{∥∥f − f ′′∥∥∞ ,

∥∥g − g′′∥∥∞}
.

Then, the bottleneck distance between the persistence diagrams of the kernel, image,
and cokernel maps is bounded above by ε:

dB
(
Dgm(grp g → f),Dgm

(
grp g′′ → f ′′

))
≤ ε,

where grp represents the kernel, image, or cokernel.

2.5.4 Interpreting Persistence Diagrams

Intuitively speaking, these derived persistence diagrams tell us how important the singu-
larities of the space are in persistent homology. A useful concept is a collection of six
related persistence diagrams, referred to as a “6-pack,” introduced in [20]. This 6-pack
quantifies how different point sets interact and can be defined for any pair of topological
spaces L ⊆ K with a filtration on K.
To be more specific, let PM ⊆ P represent the subcomplex of nonsingular points in

P , as defined earlier. Consider a radius function fk : P → R, and denote its restrictions
to PM and P \ PM as fPM and fP,PM , respectively. The radius function, along with
its restrictions, generates three persistence modules. Additionally, we derive three more
persistence modules from the kernel, image, and cokernel of the homology map induced by
the inclusion PM ⊆ P . The persistence diagrams in a six-pack are arranged to facilitate
the comparison of information across these modules.

Kernel: Relative: Cokernel:
Dgm(ker ι•) Dgm (fP,PM) Dgm (cok ι•)

Domain: Image: Codomain:
Dgm(fPM) Dgm (im ι•) Dgm (fk)

Recall that the inclusion F tPM ⊆ F tP induces a map on homology ιt : H• (F tPM)→
H• (F tP ). This map has a component in each dimension, k, and we denote the kernel,
image, and cokernel of ιt in dimension k by kerk ιt, imk ιt, and cokk ιt, respectively. For
notational convenience in the following sections, we drop the F t as it is implied by ιt.

Induced Short Exact Sequences [20]

For each dimension k, there are short exact sequences

0→ kerk ιt → Hk (PM)→ imk ιt → 0

0→ imk ιt → Hk (P )→ cokk ιt → 0

0→ cokk ιt → Hk (P, PM)→ kerp−1 ιt → 0

Proof. The first two exact sequences are derived directly from the definitions of the kernel,
image, and cokernel, along with the application of the First Isomorphism Theorem.

First Sequence
Consider the sequence 0 → kerk ιt → Hk (PM) → imk ιt → 0. This sequence is exact

because the kernel of the map ιt injects into the domain Hk (PM), and the image of the
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map is isomorphic to the quotient of the domain by the kernel, which surjects onto the
codomain.

Second Sequence
Next, consider the sequence 0 → imk ιt → Hk (P ) → cokk ιt → 0. Here, the image

imk ιt injects into Hk (P ), and the cokernel cokk ιt is defined as the quotient of Hk (P ) by
the image. The exactness of this sequence is guaranteed by the definition of the cokernel,
which ensures that the map from Hk (P ) to cokk ιt is surjective.

Third Sequence
To derive the third sequence, we start by recalling the long exact sequence of homology

associated with a pair of subcomplexes

. . .→ Hk (PM)→ Hk (P )→ Hk (P, PM)→ Hk−1 (PM)→ . . .

Since all homology groups are vector spaces when working with field coefficients, they
naturally decompose as:

Hk (PM) ∼= kerk ιt ⊕ imk ιt.

Substituting this decomposition into the long exact sequence, we obtain:

imk ιt → Hk (P )→ Hk (P, PM)→ kerk−1 ιt → 0.

Given that Hk (P ) ∼= imk ιt ⊕ cokk ιt, we can rewrite this as:

0→ cokk ιt → Hk (P, PM)→ kerk−1 ιt → 0.

This sequence is exact because cokk ιt injects into Hk (P, PM), and the image of this
injection is precisely Hk (P, PM) modulo the kernel kerk−1 ιt.

It follows that the ranks of these groups are related:

rank ker ιt + rank im ιt = rankH• (PM)

rank im ιt + rank cok ιt = rankH• (P )

The 1-norm of the k-dimensional persistence diagram for a function fK : K → R is
defined as the total difference between the deaths and births in the diagram, denoted by

∥Dgmk (fK)∥1

Assuming that every class dies at some threshold C unless it dies earlier, we have the
following relations between the 1-norms of the corresponding persistence diagrams.

Relations between 1-Norms [20]

For each dimension, k, and any fixed cut-off for the 1-norms, C > 0,

∥Dgmk (fPM)∥1 = ∥Dgmk (ker ι•)∥1 + ∥Dgmk (im ι•)∥1
∥Dgmk (fP,PM)∥1 = ∥Dgmk (cok ι•)∥1 +

∥∥Dgmk−1 (ker ι•)
∥∥
1

which yields a vanishing alternating sum∑
k∈Z

(−1)k
[
∥Dgmk (fPM)∥1 − ∥Dgmk (fP )∥1 + ∥Dgmk (fP,PM)∥1

]
= 0
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Proof. We first consider the sequence 0 ≤ r1 < r2, . . . < rn, which are the critical values of
the function fP that are less than a given threshold C. Let r0 = −∞ and define a cut-off
value rn+1 = C for computing the 1-norms.

For each value rt, let PMt = f−1
PM

([0, rt]). Notice that for any rt ≤ r < rt+1, the
preimage remains constant, so the ranks of the homology groups do not change between
these consecutive values. Thus, the 1-norm of the persistence diagram Dgmk (fPM) can
be expressed as a sum of contributions over the intervals defined by the critical values:

∥Dgmk (fPM)∥1 =
n∑

i=0

(ri+1 − ri) rankHk (PMt) .

Similarly, the 1-norms of the persistence diagrams corresponding to the kernel and image
of ι• can be written as:

∥Dgmk (ker ι•)∥1 =
n∑

i=0

(ri+1 − ri) rank kerk ιt,

∥Dgmk (im ι•)∥1 =
n∑

i=0

(ri+1 − ri) rank imk ιt.

Using the short exact sequence

0→ kerk ιt → Hk (PM)→ imk ιt → 0,

we obtain:
∥Dgmk (fPM)∥1 = ∥Dgmk (ker ι•)∥1 + ∥Dgmk (im ι•)∥1 .

Applying a similar argument to the persistence diagram Dgmk (fP ) and using the short
exact sequence

0→ imk ιt → Hk (P )→ cokk ιt → 0,

we obtain:
∥Dgmk (fP )∥1 = ∥Dgmk (im ι•)∥1 + ∥Dgmk (cok ι•)∥1 .

Finally, considering the relative persistence diagram Dgmk (fP,PM) and the exact se-
quence

0→ cokk ιt → Hk (P, PM)→ kerk−1 ιt → 0,

we obtain:

∥Dgmk (fP,PM)∥1 = ∥Dgmk (cok ι•)∥1 +
∥∥Dgmk−1 (ker ι•)

∥∥
1
.

Putting the equations together directly yields the vanishing alternating sum.

Similar equations do not hold for the 0-norm, which counts the points in the diagrams.
However, further relationships among the diagrams in a 6-pack are explored in [19], on a
case-by-case analysis of how births and deaths occur simultaneously in different groups.
It is important to note that although there are relations between the diagrams, a single
diagram is not necessarily determined by the others. In the following example, five of
the 1-dimensional persistence barcodes are identical, while the barcodes of the codomain
differ.

47



Figure 31: Example due to [20]; A single diagram is not necessarily determined by the
others

2.5.5 The Manifold Hypothesis

The manifold hypothesis is a common assumption in multivariate data analysis. It pro-
poses that data, despite being high-dimensional (with an intrinsic dimension D), actually
lies on or near a lower-dimensional d-manifold M embedded within the high-dimensional
space. This hypothesis is particularly supported by empirical evidence in domains like
image analysis, where models often describe data in this way.
However, the practice of analyzing multivariate data suggests something more complex.

For example, some real-world datasets are composed of a central “core” structure with
various “flares” extending from it, indicating they may be composed of multiple manifolds,
potentially with varying dimensions [13].

2.5.6 Sliding Window (Co)Kernel Diagrams

There are strategies available to test the manifold hypothesis, provided that a sufficient
number of samples is available [26]. However, to analyze spaces that deviate from this
hypothesis, we can use kernel, image, and cokernel persistence to quantify how much
singularities interact with the topology of the space.
Suppose we have a nonempty Dgmk (ker ι•) or Dgmk (coker ι•). This implies that the

singularities we have identified in our space give birth to or kill some homological features
in our data. For example, consider the punctured pinched disk. Persistent points in the
kernel and cokernel diagrams indicate that the singularities significantly affect the topology
of the space. In the punctured pinched disk, the persistent point in the cokernel suggests
that the singularity has a high level of interaction with the loop in our space (we omit
the persistence diagrams associated with relative homology in the diagrams below due to
limited computational resources):
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Figure 32: Punctured pinched disk with singularities

Figure 33: Punctured pinched disk 6-pack

Can we measure the amount of interaction the singular locus has with the topology
of the space? To do so, we can construct a sliding window of (co)kernel diagrams by
iteratively reducing the r-neighbourhood of Σ+r

X .
This allows us to distinguish between different types of singularities based on a shrinking

neighborhood of points. For example, consider the punctured pointed disk. If we cut out
a large enough neighborhood around the singular point, we get a relatively similar 6-pack.

Figure 34: Punctured pointed disk with singularities

49



Figure 35: Punctured pointed disk 6-pack

Suppose we want to distinguish between these two singularities. We can do so by
reducing the radius of the neighborhood around each point and studying the persistent
points in the resulting sequence of cokernel diagrams.

Figure 36: The sequence of persistent cokernel diagrams corresponding to shrinking the
neighborhood around the singularity of the punctured pinched disk

Figure 37: The sequence of persistent cokernel diagrams corresponding to shrinking the
neighborhood around the singularity of the punctured pointed disk
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We observe that the persistent point in the cokernel diagram of the punctured pinched
disk has a significantly longer lifetime than the persistent point in the cokernel diagram
of the punctured pointed disk. Therefore, we can conclude that it has significantly more
interaction with the loop generating the 1-dimensional persistent homology group in our
space.
Thus, we can use these techniques to quantify the effect of singularities on a space and

characterize the singularities themselves.

2.5.7 ε-Clustering Assumption

We can leverage kernel persistence to test possible stratifications of our data as follows.

ε-Clustering Property

Let P =
∐n

i=1Mi be the disjoint union of a point cloud P into n components.
We say that P has the ε-clustering property if there exists ε > 0 such that for all
p ∈Mi

(a) ∃q ∈Mi with p ̸= q such that d(p, q) < ε

(b) ∀r ∈Mj with j ̸= i we have d(p, r) > 2ε

In other words, the point cloud P forms a reasonably nice space to cluster. We refer to
the canonical decomposition of P into P =

∐n
i=1Mi as the ε-clustering of P .

Now, let P ⊆ X be a finite point cloud sampled from a stratified space X and define
PM = P ∩ (X− Σ+2ε

X ). Suppose P is “connected”, so for all points i, j ∈ P we have that
the pairwise distances satisfy d(xi, xj) ≤ ε, and PM satisfies the ε-clustering property.

We can describe the kernel of the bifiltration associated with PM ↪→ P as follows.

0-Dimensional Kernel Persistence

Suppose PM decomposes into n distinct ε-clusters PM =
∐n

i=1Mi. Then, after
computing a Vietoris-Rips filtration, the diagram Dgm k (ker ι•) will contain at least
n− 1 distinct 0-dimensional points with persistence at least ε.

Proof. Recall for a finite metric space (P, d), the Vietoris-Rips filtration is an increasing
sequence of simplicial complexes VRr(P ), indexed by the real numbers r ≥ 0, where
subset {x0, x1, . . . , xk} ⊂ P forms a k-dimensional simplex in VRr(P ) if and only if the
pairwise distances satisfy d(xi, xj) ≤ r for all i, j.
Let VRr(P ) and VRr(PM) be the VR-filtrations corresponding to P and PM respec-

tively. By the ε-clustering property, for all ε ≤ r < 2ε, we have

rankH0(VRr(PM)) ≥ n

Furthermore, since all pairwise distances in P satisfy d(xi, xj) ≤ ε we have

rankH0(VRr(P )) = 1

Since we only consider 0-dimensional homology, denote

ker fVRr(PM) → fVRr(P ) = {γ ∈ H0 (VRr(PM)) | ιt(γ) = 0 ∈ H0 (VRr(P ))}
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Recall rank ker ιt + rank im ιt = rankH0 (PM). Therefore, for all ε ≤ r < 2ε we have:

rank(ker fVRr(PM) → fVRr(P )) = rankH0 (PM)− (rank im fVRr(PM) → fVRr(P ))

≥ n− (rank im fVRr(PM) → fVRr(P ))

= n− 1

Hence, the kernel will have n− 1 components with persistence at least 2ε− ε = ε.

2.6 Multiparameter Persistence

Persistent homology is highly unstable to noise and outliers [8]. Many proposals have been
made to deal with such issues within the framework of 1-parameter persistence. A natural
solution to these problems is to consider 2-parameter persistent homology, where one of
the parameters is a scale parameter, as in the Rips filtration, and the other is a density
threshold. With this motivation, we briefly discuss multiparameter persistent homology.

2.6.1 Multifiltrations

To develop multiparameter persistent homology, we generalize the persistent homology
pipeline. Recall that persistent homology is defined on a filtration. We can extend this
notion to multifiltrations, where we filter our space along multiple dimensions.

Multiparameter Filtration [10]

When the indexing set P of a filtration F is a product of totally ordered sets,
P = T1 × · · · × Tn, we refer to F as a multiparameter filtration or n-parameter
filtration.

Specifically, when n = 2, this is known as a bifiltration. A bifiltration is a structured
collection of topological spaces arranged in a grid, where each space in the grid is nested
according to the order in N× N.

...
...

...

F(0,2) F(1,2) F(2,2) · · ·

F(0,1) F(1,1) F(2,1) · · ·

F(0,0) F(1,0) F(2,0) · · ·

We focus on filtrations where the topological spaces Fx are simplicial complexes.

2.6.2 Degree-Rips Filtration

There are many ways of constructing multifiltrations from data. As one example, we have
the following density-sensitive extension of the Rips filtration:
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Degree-Rips Filtration [10]

For X a metric space, r ≥ 0, and d > 0, let DRips(X)d,r be the maximal subcomplex
of Rips(X)r whose vertices have degree at least d− 1 in the 1-skeleton of Rips(X)r.
Varying r and d, we obtain a bifiltration DRips(X), known as the degree-Rips
bifiltration.

2.6.3 Multiparameter Persistence Modules

Applying homology to each space and each map in a multifiltration yields a multiparameter
persistence module, exactly as in the 1-parameter case.
Let k be a fixed field, such as k = Z/2Z, and consider k-vector spaces:

Multiparameter Persistence Module

A multiparameter persistence module or an n-parameter persistence module indexed
by a poset P = T1 × · · · × Tn is a collection of k-vector spaces, denoted Vx for each
x ∈ P , together with linear maps Vx,y : Vx → Vy for each pair x ≤ y in P . These
maps satisfy the condition that for any x ≤ y ≤ z, the composition Vy,z ◦Vx,y equals
Vx,z.

In the specific case where n = 2, this is referred to as a bipersistence module. A
bipersistence module can be visualized as a diagram of k-vector spaces arranged in a grid,
where each space is connected to others through linear maps that respect the ordering in
N× N.

...
...

...

V(0,2) V(1,2) V(2,2) · · ·

V(0,1) V(1,1) V(2,1) · · ·

V(0,0) V(1,0) V(2,0) · · ·

When applying the i-th homology functor with coefficients in k to each space and inclusion
map in a multifiltration, the resulting persistence module captures the homological features
of the filtration, structured according to the indexing poset P .

2.6.4 Invariants

Persistence modules in the single-parameter case are well understood in terms of their
algorithmic and theoretical properties. However, the situation becomes considerably
more complex when dealing with multi-parameter persistence modules. Unlike the single-
parameter case, there is no decomposition theorem to break down any module into a direct
sum of interval modules [14]. This added complexity makes it difficult to grasp their the-
oretical properties fully, but it also allows these modules to capture valuable information
that their single-parameter counterparts might miss, making them useful in application.
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Multiparameter persistence modules are challenging to analyze statistically, so we use
certain algebraic properties to describe these modules instead [69]. For these properties
to be reliable, they must be isomorphism invariants. Recall that an invariant is a function
that maps a set of structures (such as modules) to another set, called the parameter set
[14]. The key property of an invariant is that it assigns identical values to isomorphic
structures.
Due to their potential, there has been a significant effort to develop practical and stable

methods for working with multi-parameter persistence modules. Most existing approaches
are still too computationally intensive for large-scale data. Below, we briefly describe some
commonly used invariants. The most common topological multi-parameter persistence
module invariants are the Hilbert function HF and rank invariant RI.
For each point in the parameter space, the Hilbert function returns the dimension of

the corresponding vector space. In other words, it collects the dimensions of all vector
spaces within the module, expressed as HF = x 7→ dim (H∗ (Fx)).

The Hilbert Function

The Hilbert function HFM : P → N of a persistence module M maps a point in
the parameter space to the dimension of its corresponding vector space:

HFM : p 7→ dimkMp

The rank invariant is used to estimate Betti numbers in a multifiltration, and in one
dimension, it is equivalent to the barcode [14]. It works by collecting the ranks of all
morphisms in the module, represented as RI = (x, y) 7→ RI (H∗ (Sx)→ H∗ (Sy)) when
x ≤n y. Essentially, the rank invariant counts the topological structures that are preserved
as we move from x to y.

The Rank Invariant

The rank function RIM : P×P → N of a persistence moduleM takes an (ordered)
pair of points in the parameter space to the rank of the morphism between them:

RIM : (p,q) 7→ RI (Mp →Mq)

This invariant maps a pair of degrees to the rank of the map between them or assigns
a value of 0 if no such map exists. The rank function recovers the homology functor if we
study pairs RIM (p,p) for all p [14]. However, it does not provide information about pairs
of incomparable points. It cannot detect when a new homology class is created (born) or
when it disappears (dies) in multipersistence modules.
The rank invariant involves calculating the persistence barcodes for every possible line

in Rn, a method known as the fibered barcode [45]. The fibered barcode is defined for a
multi-parameter persistence module M as a map that takes a line l in Rn as input and
outputs the persistence barcode corresponding to the single-parameter persistence module
obtained by restricting M along l.

Fibered Barcode

Let M be a multiparameter persistence module. Given a discrete family of diagonal
lines L (i.e., lines with direction vector (1, . . . , 1) ∈ Rn), the fibered barcode is
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the collection of barcodes associated with the restrictions of M to the lines in L

FB(M)L = {B (M|l) : l ∈ L}

3 Computation

Having covered the relevant theory, we now move on to our computational pipelines. We
propose three computational approaches to handle data with singularities. More specifi-
cally, we introduce three computational approaches to address the following questions:

1. Which singularities significantly affect our space?

2. How do these singularities affect our space?

3. How do we compute more refined topological invariants of the resulting stratified
space?

Our approaches leverage the basic idea behind persistence: if there is a parameter of
whose value you are unsure about, rather than fix the value, vary the parameter, compute
persistence, and look for intervals of stability.
We make a large underlying assumption that the singularities in our data have been

identified beforehand. Singularity detection, especially when dealing with noise, is no
trivial task. Fitting singular spaces to data is challenging due to the general scarcity of
observations that lie precisely at singularities. Various approaches have been developed,
some of which we briefly discuss below.

3.1 Singularity Detection

Stratification learning involves identifying and analyzing non-manifold points in data by
modeling the data using stratified spaces. As discussed above, there exist datasets that
do not satisfy the Manifold Hypothesis, which assumes that data lies on a smooth, n-
dimensional surface. Instead, many datasets contain singularities—points where the local
geometry does not resemble any n-dimensional Euclidean space or arises from a strati-
fication of manifolds of possibly different dimensions. Singularities can be found in the
parameter spaces of even the most basic machine learning architectures like the multilayer
perceptron [2]. Thus, we seek an unsupervised representation learning framework capable
of identifying singular regions in point cloud data. Various approaches have been devel-
oped to address this task, though many come with specific assumptions or are heuristic in
nature [1].
Naturally, stratification learning has received significant attention from the topological

data analysis community. For example, homology-based clustering approaches characterize
intersection points by examining the topology of neighborhoods using persistent homology
[7]. Although these methods effectively manage noise, they traditionally assume that in-
tersecting curves meet transversely. Other approaches include local persistent cohomology
[66] and sheaf theoretic approaches [55].
Recent methods, such as diffusion geometry, utilize Markov diffusion operators to extend

the concept of heat flow on a manifold, enabling the development of Riemannian geometry
theory for a wide range of probability spaces, including those underlying data [39]. On a
Riemannian manifold M of dimension d, each point has a tangent space TxM, and the
Riemannian metric is an inner product that defines this space. The tangent space TxM is
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d-dimensional, and the metric has exactly d positive eigenvalues, with their eigenvectors
forming an orthonormal basis for TxM. Given a data sample fromM, we can calculate the
metric at each point x and determine these eigenvalues. The kth largest eigenvalue serves
as an indicator of “at least k-dimensionality at x”. If the data originate from a stratified
space, the tangent space is well-defined where the space resembles a manifold but becomes
degenerate where the manifold hypothesis fails. The largest eigenvalue of the metric can
measure this local failure, remaining positive where the manifold hypothesis holds and
approaching zero at degenerate points. This method’s results are comparable to existing
singularity detection approaches but are notably more robust to noise and outliers.
Other methods include multiple principal component analysis (PCA), which recovers

cluster components formed by low-dimensional objects in high-dimensional spaces using
generalized PCA [70]. When coping with non-linearity, the most studied methods are
based on local PCA and kernelized versions of it [71] [16]. Local PCA methods estimate
local tangent directions by analyzing covariance matrices. If a covariance matrix has at
least d + 1 large singular values, it suggests the presence of a branching or intersection
point in a local (d+ 1)-dimensional space.

3.1.1 Method: HADES

When applying our methods, we will assume a method of singularity detection has been
chosen and executed beforehand. The method of choice is up to the practitioner. Due to
its computational efficiency, our experiments leverage HADES, an unsupervised algorithm
that employs a kernel goodness-of-fit test to detect singularities in data [46]. The main
idea of HADES is to perform the Uniformity Test at the neighborhood of each data point.
Compared to topological approaches, this is significantly more computationally efficient
and scalable.

The Uniformity Test itself consists of two main steps: dimensionality reduction and a
goodness-of-fit test against the uniform distribution over a disk. The dimensionality re-
duction is performed using PCA, where the estimated dimension of the data is determined
by a threshold hyperparameter η. The local neighborhood of data points is then projected
onto the principal components that account for η of the total variance.

The goodness-of-fit test involves calculating the Maximum Mean Discrepancy (MMD)
between the projected data and a uniform distribution over a disk, followed by a p-value
computation under a null hypothesis. The test produces two key outputs: the singularity
score σ(z), which measures the discrepancy between the data and the uniform distribu-
tion, and the singularity p-value σ̃(z), which represents the probability that the observed
discrepancy is due to chance.
The technical details of the method can be found in [46]. HADES employs an explicit

formula for kernel MMD to compute the goodness-of-fit test, resulting in a linear time
complexity relative to the data’s dimensionality, which is a significant improvement over
the exponential complexity found in existing topological methods.

3.2 Kernel, Image, and Cokernel Persistence

To begin with the question of “which singularities significantly affect our space,” we turn
to kernel, image, and cokernel persistence. Consider a point cloud P sampled from a
stratified space X, and let ΣX represent the set of singular points identified by a given
stratification learning algorithm. Define PM = P − ΣX as the point cloud obtained after
removing the singular points from P . As a running example, let P be the figure-8. After
removing the singular points, we obtain PM:
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(a) Let P be the figure-8 (b) Define PM ⊆ P − ΣX

Figure 38: Comparison of the figure-8 singularities and pieces

3.2.1 Bifiltrations

We first construct two Vietoris-Rips filtrations of the original point cloud P and the
point cloud with singularities removed PM ⊆ P . The persistence diagrams and barcodes
corresponding to the individual sequences are as follows:

(a) Barcode corresponding to P (b) Barcode corresponding to PM

Figure 39: Comparison of the barcodes corresponding to the figure-8 P and PM

3.2.2 Image Persistence

We then compute kernel, image, and cokernel persistence and identify persistent points in
the corresponding persistence diagrams. Persistent points indicate that the singularities
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significantly affect the topology of the space.

Figure 40: The 6-pack corresponding to the figure-8

In the figure-8 example, we observe one persistent point in the 0-dimensional kernel
persistence diagram (which corresponds to one connected component) and two persistent
points in the 1-dimensional cokernel persistence diagram (which correspond to loops). The
0-dimensional point in the kernel implies that the singularity is “killing” a component
(since adding back the singularity connects two components). On the other hand, the two
1-dimensional points in the cokernel imply that the singularity gives birth to two loops in
the space (since the act of “removing the singularity” kills two loops in the space). Thus,
persistent points in the kernel indicate we have some critical singularities in our space that
separate connected components, loops, etc, and persistent points in the cokernel tell us
how these singularities affect the topology of the entire space.
If one wishes to study individual singularities, one can remove them one at a time

and compute the corresponding 6-pack. Furthermore, as discussed above, one can also
construct a sequence of persistence diagrams based on a shrinking neighborhood around
the singularities to characterize the singularities themselves.

3.3 Multiparameter Persistence

Having identified which singularities affect our space, we turn to the question of “how do
these singularities affect our space”. To answer this, we leverage multiparameter persis-
tence. We continue using the running example of the figure-8.
Having constructed parallel filtrations and applied image persistence, we can define a

simple function to extend our construction to a multiparameter persistence module. We
define f : P → {0, 1} by

f(p) =

{
0 if p ∈ PM

1 otherwise

We can then construct a bilfiltration along both f and the previous Vietoris-Rips filtra-
tion. This allows us to compute more general invariants of multiparameter persistence.

58



Furthermore, the function f can easily be extended to more dimensions, and the tech-
niques described here continue to apply. For instance, one could order singularities by
their dimension d and apply f : P → {0, 1, · · · , d}. Alternatively, one could define a
perversity function q̄ and define f(p) = q̄(p). We leave this to future work.

3.3.1 Candidate Decompositions

To make this task computationally feasible, we utilize a recently introduced family of stable
invariants known as candidate decompositions for multi-parameter persistence modules
[47]. Candidate decompositions are interval decomposable multi-parameter persistence
modules that are controllable approximations, parameterized by a precision parameter δ >
0. It is possible to quantify the approximation error between the candidate decompositions
and the actual underlying module using standard interleaving and bottleneck distances.
Analogous to the single parameter case, each component of the candidate decomposition

M̃δ =
⊕
i∈Ĩ

Ĩi

is an interval summand in Rn. For technical details, we refer the reader to [47].

3.3.2 Multiparameter Module Approximation (MMA)

Taking the figure-8 above as our running example, we can compute its candidate decompo-
sition using MMA [43] To get an idea of the module’s shape, we then visualize the module
approximation as follows.

Figure 41: The figure-8 module approximation. The y-axis corresponds to our function f ,
and the x-axis corresponds to the Vietoris-Rips filtration

Each interval, represented by a colored block, visually corresponds to the lifetime of a
cycle in the bifiltration. Conceptually, this is a two-dimensional barcode, where the y-axis
corresponds to our function f and the x-axis corresponds to the Vietoris-Rips filtration.
For example, we observe a significant component in the 0-dimensional barcode of the

figure-8 (the orange block) which is eliminated when we reintroduce the singularity (vi-
sualized by blocks with y > 1). This orange block corresponds to the two components
we observe in the zero-dimensional persistent homology of PM (which, for the same pa-
rameters in the Vietoris Rips filtration, are connected in P ). In fact, we observed this
difference between P and PM as a persistent point in the kernel persistence diagram ear-
lier. However, the module approximation allows us to easily identify the parameters of
the Vietoris-Rips filtration for which this topological feature is significant. In addition, it
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allows us to easily identify the parameters in the VR filtration for which the Betti num-
bers of P and PM are identical (which corresponds to colored blocks lining up along the
y-axis).

3.3.3 Signed Barcode Decompositions as Signed Measures

Another invariant we can compute is the signed barcode, which offers weaker topological
invariants that can be applied in a machine learning context as signed measures [11]. For
technical details, we refer the reader to [11]. Consider the Hilbert signed measure derived
from the dimension vector of a 2-parameter module.

Figure 42: The figure-8 signed barcode

In the figure above, the left side shows the pointwise dimension of the bimodule (the
Hilbert Function), while the right side displays the associated signed measure, representing
the “changes” in the values of the Hilbert function. In the signed measure on the right,
each blue dot indicates “something that appears in homology,” and each red dot represents
“something that disappears in homology.”
Thus, equipping our space with a bilfiltration corresponding to f and Vietoris-Rips

allows us to easily compute the invariants of the corresponding candidate decomposition.
We leave the discussion of all these invariants and their potential applications to machine
learning for future work.

3.4 Persistent Intersection Homology

Lastly, we turn to the question of how to compute more refined topological invariants of the
resulting stratified space. To answer this, we identify singular points using stratification
learning, use multiparameter persistence to identify manifold pieces in the resulting space,
and then apply persistent intersection homology. Existing implementations of persistent
intersection homology employ a simplex removal procedure known as ϕ-persistence [63].
This exists as a convenient abstraction that helps compute the more concrete notion
of intersection homology persistence. One could, however, consider alternative simplex
removal decision procedures other than those derived from a perversity.
Determining which simplices to allow when dealing with noisy data is not straightfor-

ward. The Vietoris-Rips complex is commonly used in topological data analysis to handle
multivariate data sets, but when applied to persistent intersection homology, it can pro-
duce unexpected results. The following example is due to [63]. Consider the wedge sum
of two circles S1 ∨ S1. This space can be represented as a simplicial complex K, where
the smallest stratification places the singular point x in its own subspace: X0 = {x} and
X1 = K. With p̄ = (−1), the intersection homology of K gives β0 = 2.
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Figure 43: The Vietoris-Rips complex “smooths out” isolated singularities [63]

However, when calculating the persistent intersection homology of a point cloud repre-
senting this space, the result is always β0 = 1. This occurs even if we make the triangula-
tion flaglike by computing the first barycentric subdivision, ensuring the calculations are
independent of the stratification. The discrepancy arises because the topological realiza-
tion of the Vietoris-Rips complex is more closely aligned with regular neighborhoods than
the actual homeomorphism type of S1 ∨ S1. A regular neighborhood is always a manifold
and so can be thought of as a “thickened” version of the space, where isolated singularities
are smoothed out.
To address this issue, we would like to cluster the strata and forbid interaction between

the resulting manifold pieces based on a perversity function. We outline our approach to
exploring different clusterings and perversities, which we discuss in more detail below. Our
general strategy is as follows. First, we remove singularities from our point cloud, either
by manual inspection or using HADES [46]. Next, we cluster the remaining manifold
pieces via Persistable [19] or AutToMATo [36] and compute intersection homology. We
then reintroduce singularities one at a time by constructing a perversity sequence and
recomputing intersection homology at each step. The resulting diagrams allow us to
study the persistent intersection homology of our space and the effect of adding back
singularities. Due to limited computational resources, we restrict ourselves to 0 and 1-
dimensional homology.

3.4.1 Clustering with Multiparameter Persistence

Clustering techniques are central to understanding and interpreting data across different
fields. The basic idea is to group objects together based on a defined notion of similarity,
usually measured by a distance or metric within the dataset. There are many clustering
methods to choose from, including hierarchical, centroid-based, and density-based tech-
niques.
Density-based clustering is a method used to group data points based on their density,

often through hierarchical clustering. Recall that degree-Rips is defined as a two-parameter
filtration of simplicial complexes. In the context of clustering, only the underlying graphs
are of interest. Degree-Rips clustering recovers well-known algorithms like DBSCAN but
also faces stability issues [25]. To address this, [64] proposes a new, more stable method
called kernel linkage, which varies both parameters in degree-rips clustering and introduces
a metric called the correspondence-interleaving distance. The method is part of a broader
pipeline for density-based clustering, called Persistable [65], which provides a more robust
framework for clustering in topological data analysis.
Persistable allows one to interactively investigate possible clusterings based on a com-

ponent counting function and prominence vineyard. This is particularly valuable when
there may not be a clear-cut, “correct” solution for how a clustering should look. The
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component counting function displays the number of clusters in the data based on a dis-
tance scale parameter and a density threshold, which are closely related to the parameters
used in the DBSCAN algorithm. However, unlike DBSCAN, Persistable doesn’t fix these
parameters. Any line in the parameter space determines a one-parameter hierarchical
clustering of the data. Persistable relies on a sequence of such “slices” of the parameter
space, computing persistent homology along each line. A “prominence vineyard” is then
constructed by taking a family of slices that interpolate between two user-selected slices.
The curves (“vines”) in the prominence vineyard represent clusters in the data that evolve
with the choice of slice [18]. The larger their prominence value, the more likely they are
to represent real structure in the data. We refer the reader to [64] for technical details.
Returning to our figure-8 example above, we plot the component counting function and

a corresponding prominence vineyard below.

Figure 44: The figure-8 component counting function and prominence vineyard

We can then select a set of parameters and visualize the resulting clusters. For example,
the two-component clustering corresponding to the initial line in the diagram above is
visualized as follows.

Figure 45: A possible clustering of the figure-8 corresponding to the Persistable output
above

An alternative approach is the topological clustering algorithm ToMATo (Topologi-
cal Mode Analysis Tool), which is designed to capture the prominences of peaks in a
density function using persistence diagrams [15]. It works by combining a graph-based
hill-climbing algorithm with a cluster-merging step guided by persistence. Hill-climbing
can be highly unstable to small changes in an estimated density function f̃ . By computing
the persistence diagram of f̃ , ToMATo quantifies the prominences of its peaks, allowing
users to distinguish significant peaks of the true density f from less important ones. The
user then selects a prominence threshold τ , retaining only those peaks with prominences
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above this threshold, which results in the final clustering. The persistence diagram clearly
illustrates how the choice of τ impacts the number of clusters obtained.
However, one of the challenges in clustering, especially in real-world applications, is

selecting the right parameters—a process known as hyperparameter tuning. One way
to avoid the complexity of choosing hyperparameters is through a bottleneck bootstrap
on the persistence diagram produced by ToMATo, which is precisely what AuToMATo
does [36]. After generating a persistence diagram from a point cloud using ToMATo,
AuToMATo creates a confidence region for that diagram based on the bottleneck distance.
This confidence region helps determine the optimal choice of τ , ultimately guiding a final
(parameter-free) clustering.
Applying this to our figure-8 example results in the following clusters.

Figure 46: The AuToMATo clustering of the figure-8

3.4.2 Persistent Intersection Homology

After identifying singularities, we cluster the corresponding strata using AuToMATo, la-
bel singular points according to their nearest cluster, and plot the resulting intersection
homology groups. For example, consider the following two overlapping circles.

Figure 47: The AuToMATo clustering of the two overlapping circles

The persistent intersection homology groups which forbid all intersections with the
singular locus are then computed as follows:
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Figure 48: The persistent intersection homology groups of the two overlapping circles
which forbid all intersections with the singular locus, where singular points
are labeled according to their nearest cluster

Although this approach can be informative in some cases, we observe that we lose track
of the loops in our space by forbidding all interaction with singularities. To address this
issue, we construct a sequence of perversities to reintroduce allowable singularities one at
a time.

3.4.3 Perversity Sequence

We first define a filtered space based on the singular locus. More specifically, we separate
the singular locus into a disjoint union of singularities ΣX =

∐n
i=0Σi and construct a

filtration reintroducing each singularity one by one:

{Σ0} ⊆ {Σ0 ∪ Σ1} ⊆ · · · ⊆ {Σ0 ∪ Σ1 ∪ · · · ∪ Σn} = ΣX ⊆ P

Although we don’t specify an order, one could, for example, order the singularities by
dimensionality. In practice, a filtration of the singular locus can be based on clustering
individual singularities. For example, the filtration corresponding to a k-means clustering
of the two singularities in the two overlapping circles is as follows.

Figure 49: Filtration of the singularities in the two overlapping circles
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We can define a sequence of perversity functions to “reallow” intersections with singu-
larities one at a time. Let {p} = p0, p1, . . . , pn be defined by

Algorithm 1 Perversity Sequence Initialization and Update

p0k ← k − max{i} − 1 ▷ Initialize perversity sequence disallowing

all intersections, where max{i} is the maximum dimension of the i-chains
considered.

for t ∈ {0, n} do

if t = 0 then

pt ← p0

else

pt ← pt−1

end if

k ← t
ptk ← k ▷ Update codimension k = t to allow intersections.

end for

By starting with the sequence {0,−1,−2, · · · ,−n}, we effectively forbid all intersections
since

(i− k) + (k −max i− 1)

= i−max i− 1

< 0

From here, we enable codimensions one at a time since for any i-chain σ, we have

(i− k) + (k)

= i

≥ dim(σ ∩Xn−k)

Furthermore, since pt ≤ pt+1 at each step in the sequence above, we induce homomor-
phisms of the corresponding intersection homology groups. We can then track changes in
intersection homology as we add back singularities. Consider the example of two overlap-
ping circles above.

Figure 50: The sequence of persistent intersection homology diagrams of the two overlap-
ping circles corresponding to reintroducing allowable singularities
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We can observe how the singularities we add back interact with the topological features
in our space by reintroducing singularities and tracking changes along the corresponding
intersection homology groups. For example, we see that the singularity we add back at
“Filtration Step 2” in the diagram above connects all of the components from “Filtration
Step 1” and reintroduces three loops in our space.

4 Application

Current trends in Natural Language Processing (NLP) involve using highly complex mod-
els, such as neural networks and word embeddings [58]. Although these models achieve
state-of-the-art performance across various tasks, their lack of interpretability is a major
drawback.
We apply our computational approaches to the study of word embeddings. It has been

argued that word vectors lie on a pinched manifold, that is, the quotient of a manifold
obtained by identifying some of its points [38]. These singular points correspond to poly-
semous words, i.e., words with multiple meanings, which suggests that monosemous and
polysemous words can be differentiated based on the topology of their neighborhoods.

Figure 51: An idealized picture of the word “mole” [38]

For example, consider the word disambiguation problem, which refers to determining
the number of possible meanings of a word. Recent work has employed local homology
to study the word disambiguation problem [67], which has been extended to employ per-
sistent homology [38]. We propose extending this to kernel/image/cokernel persistence,
multiparameter persistence, and persistent intersection homology, all of which can detect
more refined topological features in the presence of singularities.

4.1 Word Embeddings

Word embeddings represent words as vectors in a multi-dimensional space, where the dis-
tance and direction between these vectors indicate the similarity and relationships between
the words. This approach contrasts with traditional methods like one-hot encoding, which
fails to capture semantic information or relationships between words. In contrast, word
embeddings are dense vectors with continuous values, typically learned through machine
learning techniques, often involving neural networks. These embeddings are trained on
large text datasets, allowing the model to adjust the vectors based on the contexts in
which words appear.
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Figure 52: “Embeddings can produce remarkable analogies”; Image from develop-
ers.google.com

Word embeddings primarily aim to create numerical representations of words that re-
flect their semantic relationships and contextual meanings. Popular methods for training
word embeddings include Word2Vec [53], which uses a neural network to predict sur-
rounding words, and GloVe (Global Vectors for Word Representation) [59], which creates
embeddings based on global text statistics.
The success of methods like Word2Vec and GloVe has led to the development of more

advanced language models, such as FastText, BERT, and GPT. These models incorporate
techniques like subword embeddings, attention mechanisms, and transformers to handle
more complex embeddings. However, for simplicity in computational experiments, we will
focus on GloVe embeddings and leave the exploration of these advanced models for future
work. We briefly discuss Word2Vec and GloVe below, omitting technical details. For a
more thorough exposition, the reader is referred to [24].

4.1.1 Word2Vec

Word2Vec, a method developed by a team of Google researchers in 2013 [53], includes
two primary models for generating vector representations of words: Continuous Bag of
Words (CBOW) and Continuous Skip-gram. The CBOW model predicts a target word
based on its surrounding context words within a specified window, capturing the semantic
relationships between them. In contrast, the Continuous Skip-gram model works in the
opposite direction, taking a target word as input and predicting its surrounding context
words.
However, Word2Vec has some limitations. One of the main challenges is handling pol-

ysemy; the model tends to average or blend the representations of different senses [12].
More advanced models like FastText, GloVe, and transformer-based models have been
developed to address these issues.

4.1.2 GloVe

GloVe (Global Vectors for Word Representation) is a word embedding model that captures
global statistical patterns of word co-occurrences within a corpus. Developed by Jeffrey
Pennington, Richard Socher, and Christopher D. Manning in 2014 [59], GloVe differs from
Word2Vec by leveraging global information instead of concentrating only on local context.
The core idea behind GloVe is that understanding word semantics requires considering
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the overall statistics of word co-occurrence across the entire corpus. Rather than just
examining the immediate context around individual words, GloVe accounts for how often
words appear together throughout the whole dataset. The model aims to minimize the
difference between the predicted co-occurrence probabilities and the actual probabilities
derived from corpus statistics.

4.2 Dimensionality Reduction

Word embeddings are usually represented in high-dimensional spaces, such as 100, 300, or
even 768 dimensions, which makes them hard to interpret or visualize. To address this, it
is common to apply various dimensionality reduction techniques, allowing one to visualize
how words relate. This approach helps uncover semantic clusters, word analogies, and
patterns within the data. Additionally, reducing dimensions helps lower the computational
cost of processing high-dimensional data. We employ Uniform Manifold Approximation
and Projection (UMAP) [52] for dimensionality reduction.

4.2.1 Method: UMAP

Uniform Manifold Approximation and Projection (UMAP) is a visualization and dimen-
sionality reduction technique based on manifold learning. We use UMAP for dimen-
sionality reduction for two key reasons. First, it is designed to preserve the topological
structure of the data. Second, UMAP effectively preserves both local structure (larger
semantic groupings) and global structure (capturing broader semantic groupings). This
makes it a good choice for balancing the representation of local neighborhoods with an
accurate representation of the overall data structure.
UMAP leverages local manifold approximation, combining them through their local

fuzzy simplicial set representations to form a topological representation of high-dimensional
data. This process is mirrored in a lower-dimensional space, where UMAP constructs a cor-
responding topological representation based on an initial low-dimensional representation
of the data. The optimization phase of UMAP then adjusts this low-dimensional repre-
sentation to reduce the cross-entropy between the high-dimensional and low-dimensional
topological representations. The reader is referred to [52] for technical details.

4.3 Experimental Results

We study the “gensim/glove-twitter-200” pre-trained word embedding model available in
the Gensim library [77]. It consists of pre-trained GloVe vectors of dimension 200 that
are derived from 2 billion tweets, encompassing 27 billion tokens and a vocabulary of 1.2
million words, all in an uncased format.

4.3.1 Image Persistence

We begin by comparing words and embedding dimensions using image persistence. In
particular, we use image persistence to investigate how the persistent kernel diagram
changes as the dimension of the embedding space is reduced.
Our pipeline is as follows. We get the local neighborhood of a word by selecting the 50

most similar words based on cosine similarity. We project the selected neighborhood to
25, 10, 5, and 2 dimensions using UMAP, constraining the size of the local neighborhood
to 5. We then further remove a hypothetical “singular neighborhood” around the word
by selecting and removing the ten most similar words. Finally, we compute the 6-pac ks
of the resulting spaces, using a maximum edge length of 2 to track local changes. It’s
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important to note that the size of the neighborhoods and chosen projection dimensions
are arbitrary. In the future, we will need to systematically explore various nonlinear
dimensionality reduction approaches, neighborhood sizes, and other factors.
As an example, consider the words pound’ and purple.’ According to WordNet, a

large lexical database of the English language, words are grouped into synonyms called
“synsets.” Each synset represents a unique concept [54]. The word “pound” has 22 senses,
and the word “purple” has 7. Because of the difference in the number of senses, one might
conjecture that there are more 0-dimensional components in the kernel persistence diagram
of “pound” than in that of “purple.”
We begin by listing some words in the neighborhoods of “pound” and “purple” according

to cosine similarity below. The most similar words to “purple” are all colors. In contrast,
we interpret “dollar” and “lb” as having different senses.

(a) A 5 element neigh-
borhood of “pound”

(b) A 5 element neigh-
borhood of “purple”

Figure 53: Comparison of 5 element neighborhoods for the words “pound” and “purple”

Next, we plot the persistence kernel diagrams corresponding to the 25, 10, 5, and 2-
dimensional UMAP projections of the word “pound” below.

(a) 25 dimensions (b) 10 dimensions (c) 5 dimensions (d) 3 dimensions (e) 2 dimensions

Figure 54: Kernel persistence of the UMAP projections of the word “pound” in different
dimensions

These persistent kernel diagrams enable us to observe how the topology of the space
changes as we perform dimensionality reduction. For example, we have at least approxi-
mately three persistent points in the persistent kernel of the 25-dimensional embedding,
which implies that when we assume the word “pound” is a singularity, it may be connected
to at least four components. In contrast, we only observe two such persistent points in
the 10-dimensional embedding. The 6-pack corresponding to the 10-dimensional UMAP
projection of the word “pound” is illustrated as follows.
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Figure 55: 10-dimensional UMAP projection of the word “pound”

Next, consider the word “purple”. We plot the corresponding persistence kernel dia-
grams below.

(a) 25 dimensions (b) 10 dimensions (c) 5 dimensions (d) 3 dimensions (e) 2 dimensions

Figure 56: Kernel persistence of the UMAP projections of the word “purple” in different
dimensions

We observe significantly fewer zero-dimensional points in the persistent kernel diagrams
of the word “purple”. The 6-pack corresponding to the 10-dimensional UMAP projection
of “purple” is illustrated as follows.

Figure 57: 10-dimensional UMAP projection of the word “purple”
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4.3.2 Multiparameter Persistence

We turn to multiparameter persistence to further investigate the 10-dimensional UMAP
projections of the words “pound” and “purple.” Using the same sequence of nested filtra-
tions described above, we can construct a multiparameter persistence module and compute
a candidate decomposition using multiparameter module approximation. We then visual-
ize the module approximations as follows.

(a) 10-dimensional UMAP projection of a neigh-
borhood of the word “pound”

(b) 10-dimensional UMAP projection of a neigh-
borhood of the word “purple”

Figure 58: Side-by-side comparison of multiparameter module approximations for “pound”
and “purple”.

We are also able to compute various invariants, such as the signed barcode with the
Hilbert signed measure.

(a) 10-dimensional UMAP projection of a neigh-
borhood of the word “pound”

(b) 10-dimensional UMAP projection of a neigh-
borhood of the word “purple”

Figure 59: Side-by-side comparison of Hilbert signed measures for “pound” and “purple”.

4.3.3 Intersection Homology

Lastly, we compute more refined topological invariants of the resulting space. We be-
gin with multiparameter density-based clustering using Persistable [65]. The component
counting functions are illustrated below.
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(a) The component counting function
corresponding to “pound”

(b) The component counting function
corresponding to “purple”

Figure 60: Comparison of component counting functions for “pound” and “purple”.

The persistent dark grey block in the component counting function for the word ”pound”
represents five components, while the lighter grey block on the right represents three
components. Thus, multiparameter density-based clustering indicates that there are likely
either three or five components in this space. In contrast, applying the same method to the
word “purple ” seems to show fewer intervals of stability, with only one block corresponding
to three persistent components. We can choose any slice and visualize the corresponding
prominence vineyard as follows.

Figure 61: A prominence vineyard of “pound”

Figure 62: A prominence vineyard of “purple”

Below are examples of possible clusterings generated by Persistable. We visualize them
by plotting the first two coordinates of the corresponding 10-dimensional UMAP embed-
dings.

Figure 63: Clusterings of the word “pound”, plotted against the first two dimensions of
the 10-dimensional UMAP projection
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Figure 64: Clusterings of the word “pound”, plotted against the first two dimensions of
the 10-dimensional UMAP projection

Based on the component counting functions, we select a clustering of 5 components for
the word “pound” and 3 for the word “purple”. We then construct a one-step filtration that
“reallows” intersections with the neighborhood of the word “pound”, merge clusters that
are within distance ϵ = 2, and compute the corresponding intersection homology groups.
Note that the clustering and the distance ϵ at which we merge clusters is arbitrary, and
comparing various choices is a direction we leave for future research. We visualize the
persistent intersection homology groups associated with “pound” and “purple” below by
plotting the first two coordinates of the 10-dimensional UMAP embedding.

Figure 65: Persistent intersection homology groups of the singularity filtration associated
with the word “pound”

We observe that the neighborhoods of both “pound” and “purple” introduce a compo-
nent and cycle in the corresponding intersection homology groups. However, the persistent
homology of the word “pound” seems to have more 0-dimensional components.
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Figure 66: Persistent intersection homology groups of the singularity filtration associated
with the word “purple”

These preliminary observations indicate that the topological structures and components
within the word embeddings of “pound” and “purple” differ, reflecting the complexity
and multiplicity of senses associated with each word. Further exploration and systematic
analysis could help clarify these relationships.

5 Conclusion

We have explored the application of persistent homology to the analysis of stratified spaces,
particularly in the context of word embeddings. We have seen that by introducing kernel,
image, and cokernel persistence, it is possible to analyze the singularities within stratified
data more effectively. The use of bifiltrations and sliding window (co)kernel diagrams has
provided novel insights into the topology of the data, offering a means to differentiate be-
tween various types of singularities, such as those associated with polysemous words. We
demonstrated the practical applications of these theoretical advancements by conducting
computational experiments using word embeddings. Our findings suggest that the topol-
ogy of local neighborhoods within word embeddings is influenced by factors such as the
choice of embedding method and dimensionality reduction techniques.
There are many directions for future research with regard to the theoretical, computa-

tional, and application-oriented aspects of this work, more than can reasonably fit in this
section. We mention some possible directions below.

5.1 Future Work

Theory

One potential direction is to extend the study of bifiltrations in kernel/image/cokernel
persistence to multifiltrations that incorporate perversities and ideas from chromatic com-
plexes. Additionally, further work is needed to investigate the invariants associated with
these multifiltrations and their potential applications in machine learning.

Computation

Future research could focus on exploring different ways of ordering singularities when
constructing perversity sequences, such as based on dimensionality. Moreover, investigat-
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ing invariants of multiparameter persistence, like the component counting function, could
lead to deeper insights.

Application

On the application side, these computational techniques have significant potential for
studying the training process of word embeddings and tracking how the topology of neigh-
borhoods of words changes. Extending these techniques to study attention mechanisms
could further enhance our understanding of word embeddings. Additionally, we propose
applying these techniques to other settings with stratified data, such as the parameter
spaces of multilayer perceptrons or biological materials.

In conclusion, this dissertation has laid the groundwork for future exploration at the
intersection of topological data analysis and stratified spaces. The methods developed
here open new avenues for research and applications, promising to yield further insights
into the complex structures that underlie word embeddings and other high-dimensional
data representations.
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[38] A. Jakubowski, M. Gašić, and M. Zibrowius. Topology of word embeddings: Singu-
larities reflect polysemy. arXiv preprint arXiv:2011.09413, 2020.

[39] I. Jones. Diffusion geometry. arXiv preprint arXiv:2405.10858, 2024.

[40] H. C. King. Topological invariance of intersection homology without sheaves. Topology
and its Applications, 20(2):149–160, 1985.

[41] F. Kirwan and J. Woolf. An introduction to intersection homology theory. CRC Press,
2006.

[42] S. L. Kleiman. The development of intersection homology theory. Pure Appl. Math.
Q, 3(1):225–282, 2007.

[43] D. Lapous, H. Schreiber, L. Scoccola, and M. Carrière. multipers: Multiparam-
eter persistence for machine learning. URL https://github.com/DavidLapous/

multipers.

[44] S. Lefschetz. Topology, volume 12. American Mathematical Soc., 1930.

[45] M. Lesnick and M. Wright. Interactive visualization of 2-d persistence modules. arXiv
preprint arXiv:1512.00180, 2015.

[46] U. Lim, H. Oberhauser, and V. Nanda. Hades: Fast singularity detection with local
measure comparison. arXiv preprint arXiv:2311.04171, 2023.

[47] D. Loiseaux, M. Carriere, and A. J. Blumberg. Fast, stable and efficient ap-
proximation of multi-parameter persistence modules with mma. arXiv preprint
arXiv:2206.02026, 2022.

[48] R. MacPherson. Intersection homology and perverse sheaves. In Unpublished AMS
Colloquium Lectures, San Francisco, volume 4, page 15, 1991.

[49] R. MacPherson and K. Vilonen. Elementary construction of perverse sheaves. Inven-
tiones mathematicae, 84(2):403–435, 1986.

[50] L. Maxim. Intersection Homology & Perverse Sheaves. Springer, 2019.

[51] C. McCrory. Cone complexes and pl transversality. Transactions of the American
Mathematical Society, 207:269–291, 1975.

[52] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[53] T. Mikolov. Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

[54] G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41, 1995.

78

https://github.com/DavidLapous/multipers
https://github.com/DavidLapous/multipers


[55] V. Nanda. Local cohomology and stratification. Foundations of Computational Math-
ematics, 20:195–222, 2020.

[56] V. Nanda. Computational Algebraic Topology: Lecture Notes. 2023.

[57] S. Y. Oudot. Persistence theory: from quiver representations to data analysis, volume
209. American Mathematical Soc., 2017.

[58] R. Patil, S. Boit, V. Gudivada, and J. Nandigam. A survey of text representation
and embedding techniques in nlp. IEEE Access, 11:36120–36146, 2023.

[59] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.
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